Neural Stochastic Dual Dynamic Programming
- URL: http://arxiv.org/abs/2112.00874v1
- Date: Wed, 1 Dec 2021 22:55:23 GMT
- Title: Neural Stochastic Dual Dynamic Programming
- Authors: Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, Bo Dai
- Abstract summary: We introduce a trainable neural model that learns to map problem instances to a piece-wise linear value function.
$nu$-SDDP can significantly reduce problem solving cost without sacrificing solution quality.
- Score: 99.80617899593526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic dual dynamic programming (SDDP) is a state-of-the-art method for
solving multi-stage stochastic optimization, widely used for modeling
real-world process optimization tasks. Unfortunately, SDDP has a worst-case
complexity that scales exponentially in the number of decision variables, which
severely limits applicability to only low dimensional problems. To overcome
this limitation, we extend SDDP by introducing a trainable neural model that
learns to map problem instances to a piece-wise linear value function within
intrinsic low-dimension space, which is architected specifically to interact
with a base SDDP solver, so that can accelerate optimization performance on new
instances. The proposed Neural Stochastic Dual Dynamic Programming ($\nu$-SDDP)
continually self-improves by solving successive problems. An empirical
investigation demonstrates that $\nu$-SDDP can significantly reduce problem
solving cost without sacrificing solution quality over competitors such as SDDP
and reinforcement learning algorithms, across a range of synthetic and
real-world process optimization problems.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - DIMES: A Differentiable Meta Solver for Combinatorial Optimization
Problems [41.57773395100222]
Deep reinforcement learning (DRL) models have shown promising results in solving NP-hard Combinatorial Optimization problems.
This paper addresses the scalability challenge in large-scale optimization by proposing a novel approach, namely, DIMES.
Unlike previous DRL methods which suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES introduces a compact continuous space for parameterizing the underlying distribution of candidate solutions.
Extensive experiments show that DIMES outperforms recent DRL-based methods on large benchmark datasets for Traveling Salesman Problems and Maximal Independent Set problems.
arXiv Detail & Related papers (2022-10-08T23:24:37Z) - Efficient differentiable quadratic programming layers: an ADMM approach [0.0]
We present an alternative network layer architecture based on the alternating direction method of multipliers (ADMM)
Backward differentiation is performed by implicit differentiation of the residual map of a modified fixed-point iteration.
Simulated results demonstrate the computational advantage of the ADMM layer, which for medium scaled problems is approximately an order of magnitude faster than the OptNet quadratic programming layer.
arXiv Detail & Related papers (2021-12-14T15:25:07Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.