N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event
Cameras
- URL: http://arxiv.org/abs/2112.01041v1
- Date: Thu, 2 Dec 2021 08:08:32 GMT
- Title: N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event
Cameras
- Authors: Junho Kim, Jaehyeok Bae, Gangin Park, and Young Min Kim
- Abstract summary: We introduce N-ImageNet, a large-scale dataset targeted for robust, fine-grained object recognition with event cameras.
N-ImageNet serves as a challenging benchmark for event-based object recognition, due to its large number of classes and samples.
- Score: 5.726662931271546
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce N-ImageNet, a large-scale dataset targeted for robust,
fine-grained object recognition with event cameras. The dataset is collected
using programmable hardware in which an event camera consistently moves around
a monitor displaying images from ImageNet. N-ImageNet serves as a challenging
benchmark for event-based object recognition, due to its large number of
classes and samples. We empirically show that pretraining on N-ImageNet
improves the performance of event-based classifiers and helps them learn with
few labeled data. In addition, we present several variants of N-ImageNet to
test the robustness of event-based classifiers under diverse camera
trajectories and severe lighting conditions, and propose a novel event
representation to alleviate the performance degradation. To the best of our
knowledge, we are the first to quantitatively investigate the consequences
caused by various environmental conditions on event-based object recognition
algorithms. N-ImageNet and its variants are expected to guide practical
implementations for deploying event-based object recognition algorithms in the
real world.
Related papers
- Evaluating Image-Based Face and Eye Tracking with Event Cameras [9.677797822200965]
Event Cameras, also known as Neuromorphic sensors, capture changes in local light intensity at the pixel level, producing asynchronously generated data termed events''
This data format mitigates common issues observed in conventional cameras, like under-sampling when capturing fast-moving objects.
We evaluate the viability of integrating conventional algorithms with event-based data, transformed into a frame format.
arXiv Detail & Related papers (2024-08-19T20:27:08Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
We present a segmentation pipeline to semi-automatically separate individuals and objects in images.
Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms.
We demonstrate that object-specific contextual transformations during training effectively mitigate this challenge.
arXiv Detail & Related papers (2024-04-11T19:06:36Z) - Event-to-Video Conversion for Overhead Object Detection [7.744259147081667]
Event cameras complicate downstream image processing, especially for complex tasks such as object detection.
We show that there is a significant gap in performance between dense event representations and corresponding RGB frames.
We apply event-to-video conversion models that convert event streams into gray-scale video to close this gap.
arXiv Detail & Related papers (2024-02-09T22:07:39Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Cross-modal Place Recognition in Image Databases using Event-based
Sensors [28.124708490967713]
We present the first cross-modal visual place recognition framework that is capable of retrieving regular images from a database given an event query.
Our method demonstrates promising results with respect to the state-of-the-art frame-based and event-based methods on the Brisbane-Event-VPR dataset.
arXiv Detail & Related papers (2023-07-03T14:24:04Z) - EventCLIP: Adapting CLIP for Event-based Object Recognition [26.35633454924899]
EventCLIP is a novel approach that utilizes CLIP for zero-shot and few-shot event-based object recognition.
We first generalize CLIP's image encoder to event data by converting raw events to 2D grid-based representations.
We evaluate EventCLIP on N-Caltech, N-Cars, and N-ImageNet datasets, achieving state-of-the-art few-shot performance.
arXiv Detail & Related papers (2023-06-10T06:05:35Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Learning to Detect Objects with a 1 Megapixel Event Camera [14.949946376335305]
Event cameras encode visual information with high temporal precision, low data-rate, and high-dynamic range.
Due to the novelty of the field, the performance of event-based systems on many vision tasks is still lower compared to conventional frame-based solutions.
arXiv Detail & Related papers (2020-09-28T16:03:59Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.