Risk-Aware Algorithms for Combinatorial Semi-Bandits
- URL: http://arxiv.org/abs/2112.01141v1
- Date: Thu, 2 Dec 2021 11:29:43 GMT
- Title: Risk-Aware Algorithms for Combinatorial Semi-Bandits
- Authors: Shaarad Ayyagari, Ambedkar Dukkipati
- Abstract summary: We study the multi-armed bandit problem under semi-bandit feedback.
We consider the problem of maximizing the Conditional Value-at-Risk (CVaR), a risk measure that takes into account only the worst-case rewards.
We propose new algorithms that maximize the CVaR of the rewards obtained from the super arms of the bandit.
- Score: 7.716156977428555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the stochastic combinatorial multi-armed bandit
problem under semi-bandit feedback. While much work has been done on algorithms
that optimize the expected reward for linear as well as some general reward
functions, we study a variant of the problem, where the objective is to be
risk-aware. More specifically, we consider the problem of maximizing the
Conditional Value-at-Risk (CVaR), a risk measure that takes into account only
the worst-case rewards. We propose new algorithms that maximize the CVaR of the
rewards obtained from the super arms of the combinatorial bandit for the two
cases of Gaussian and bounded arm rewards. We further analyze these algorithms
and provide regret bounds. We believe that our results provide the first
theoretical insights into combinatorial semi-bandit problems in the risk-aware
case.
Related papers
- Replicability is Asymptotically Free in Multi-armed Bandits [45.729105054410745]
This work is motivated by the growing demand for reproducible machine learning.
In particular, we consider a replicable algorithm that ensures, with high probability, that the algorithm's sequence of actions is not affected by the randomness inherent in the dataset.
arXiv Detail & Related papers (2024-02-12T03:31:34Z) - Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed
Bandit [65.268245109828]
We first introduce the Combinatorial Successive Asign algorithm, which is the first algorithm that can identify the best action even when the size of the action class is exponentially large.
We show that the upper bound of the probability of error of the CSA algorithm matches a lower bound up to a logarithmic factor in the exponent.
We experimentally compare the algorithms with previous methods and show that our algorithm performs better.
arXiv Detail & Related papers (2023-10-24T09:47:32Z) - Contextual bandits with concave rewards, and an application to fair
ranking [108.48223948875685]
We present the first algorithm with provably vanishing regret for Contextual Bandits with Concave Rewards (CBCR)
We derive a novel reduction from the CBCR regret to the regret of a scalar-reward problem.
Motivated by fairness in recommendation, we describe a special case of CBCR with rankings and fairness-aware objectives.
arXiv Detail & Related papers (2022-10-18T16:11:55Z) - Versatile Dueling Bandits: Best-of-both-World Analyses for Online
Learning from Preferences [28.79598714109439]
We study the problem of $K$-armed dueling bandit for both and adversarial environments.
We first propose a novel reduction from any (general) dueling bandits to multi-armed bandits.
Our algorithm is also the first to achieve an optimal $O(sum_i = 1K fraclog TDelta_i)$ regret bound against the Condorcet-winner benchmark.
arXiv Detail & Related papers (2022-02-14T13:37:23Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
Combinatorial bandits generalize multi-armed bandits, where the agent chooses sets of arms and observes a noisy reward for each arm contained in the chosen set.
We focus on the pure-exploration problem of identifying the best arm with fixed confidence, as well as a more general setting, where the structure of the answer set differs from the one of the action set.
Based on a projection-free online learning algorithm for finite polytopes, it is the first computationally efficient algorithm which is convexally optimal and has competitive empirical performance.
arXiv Detail & Related papers (2021-01-21T10:35:09Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
We provide a simple method to combine bandit algorithms.
Our approach is based on a "meta-UCB" procedure that treats each of $N$ individual bandit algorithms as arms in a higher-level $N$-armed bandit problem.
arXiv Detail & Related papers (2020-12-24T05:36:29Z) - Adaptive Algorithms for Multi-armed Bandit with Composite and Anonymous
Feedback [32.62857394584907]
We study the multi-armed bandit (MAB) problem with composite and anonymous feedback.
We propose adaptive algorithms for both the adversarial and non- adversarial cases.
arXiv Detail & Related papers (2020-12-13T12:25:41Z) - Corralling Stochastic Bandit Algorithms [54.10645564702416]
We show that the regret of the corralling algorithms is no worse than that of the best algorithm containing the arm with the highest reward.
We show that the gap between the highest reward and other rewards depends on the gap between the highest reward and other rewards.
arXiv Detail & Related papers (2020-06-16T15:33:12Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
We develop Thompson Sampling-style algorithms for mean-variance MAB.
We also provide comprehensive regret analyses for Gaussian and Bernoulli bandits.
Our algorithms significantly outperform existing LCB-based algorithms for all risk tolerances.
arXiv Detail & Related papers (2020-02-01T15:33:50Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
We formulate two sample multi-armed bandit problems with distorted probabilities on the reward distributions.
We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits.
arXiv Detail & Related papers (2016-11-30T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.