Structural Sieves
- URL: http://arxiv.org/abs/2112.01377v1
- Date: Wed, 1 Dec 2021 16:37:02 GMT
- Title: Structural Sieves
- Authors: Konrad Menzel
- Abstract summary: We show that certain deep networks are particularly well suited as a nonparametric sieve to approximate regression functions.
We show that restrictions of this kind are imposed in a more straightforward manner if a sufficiently flexible version of the latent variable model is in fact used to approximate the unknown regression function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the use of deep neural networks for semiparametric
estimation of economic models of maximizing behavior in production or discrete
choice. We argue that certain deep networks are particularly well suited as a
nonparametric sieve to approximate regression functions that result from
nonlinear latent variable models of continuous or discrete optimization.
Multi-stage models of this type will typically generate rich interaction
effects between regressors ("inputs") in the regression function so that there
may be no plausible separability restrictions on the "reduced-form" mapping
form inputs to outputs to alleviate the curse of dimensionality. Rather,
economic shape, sparsity, or separability restrictions either at a global level
or intermediate stages are usually stated in terms of the latent variable
model. We show that restrictions of this kind are imposed in a more
straightforward manner if a sufficiently flexible version of the latent
variable model is in fact used to approximate the unknown regression function.
Related papers
- A Non-negative VAE:the Generalized Gamma Belief Network [49.970917207211556]
The gamma belief network (GBN) has demonstrated its potential for uncovering multi-layer interpretable latent representations in text data.
We introduce the generalized gamma belief network (Generalized GBN) in this paper, which extends the original linear generative model to a more expressive non-linear generative model.
We also propose an upward-downward Weibull inference network to approximate the posterior distribution of the latent variables.
arXiv Detail & Related papers (2024-08-06T18:18:37Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
We propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility.
Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
arXiv Detail & Related papers (2023-01-02T06:16:56Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Efficient Marginalization of Discrete and Structured Latent Variables
via Sparsity [26.518803984578867]
Training neural network models with discrete (categorical or structured) latent variables can be computationally challenging.
One typically resorts to sampling-based approximations of the true marginal.
We propose a new training strategy which replaces these estimators by an exact yet efficient marginalization.
arXiv Detail & Related papers (2020-07-03T19:36:35Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Latent variable modeling with random features [7.856578780790166]
We develop a family of nonlinear dimension reduction models that are easily to non-Gaussian data likelihoods.
Our generalized RFLVMs produce results comparable with other state-of-the-art dimension reduction methods.
arXiv Detail & Related papers (2020-06-19T14:12:05Z) - Dimension Independent Generalization Error by Stochastic Gradient
Descent [12.474236773219067]
We present a theory on the generalization error of descent (SGD) solutions for both and locally convex loss functions.
We show that the generalization error does not depend on the $p$ dimension or depends on the low effective $p$logarithmic factor.
arXiv Detail & Related papers (2020-03-25T03:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.