Near-optimal covariant quantum error-correcting codes from random
unitaries with symmetries
- URL: http://arxiv.org/abs/2112.01498v2
- Date: Mon, 11 Apr 2022 04:49:06 GMT
- Title: Near-optimal covariant quantum error-correcting codes from random
unitaries with symmetries
- Authors: Linghang Kong, Zi-Wen Liu
- Abstract summary: We analytically study the most essential cases of $U(1)$ and $SU(d)$ symmetries.
We show that for both symmetry groups the error of the covariant codes generated by Haar-random symmetric unitaries, typically scale as $O(n-1)$ in terms of both the average- and worst-case distances against erasure noise.
- Score: 1.2183405753834557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction and symmetries play central roles in quantum
information science and physics. It is known that quantum error-correcting
codes that obey (are covariant with respect to) continuous symmetries in a
certain sense cannot correct erasure errors perfectly (a well-known result in
this regard being the Eastin-Knill theorem in the context of fault-tolerant
quantum computing), in contrast to the case without symmetry constraints.
Furthermore, several quantitative fundamental limits on the accuracy of such
covariant codes for approximate quantum error correction are known. Here, we
consider the quantum error correction capability of uniformly random covariant
codes. In particular, we analytically study the most essential cases of $U(1)$
and $SU(d)$ symmetries, and show that for both symmetry groups the error of the
covariant codes generated by Haar-random symmetric unitaries, i.e., unitaries
that commute with the group actions, typically scale as $O(n^{-1})$ in terms of
both the average- and worst-case purified distances against erasure noise,
saturating the fundamental limits to leading order. We note that the results
hold for symmetric variants of unitary 2-designs, and comment on the
convergence problem of symmetric random circuits. Our results not only indicate
(potentially efficient) randomized constructions of optimal $U(1)$- and
$SU(d)$-covariant codes, but also reveal fundamental properties of random
symmetric unitaries, which yield important solvable models of complex quantum
systems (including black holes and many-body spin systems) that have attracted
great recent interest in quantum gravity and condensed matter physics. We
expect our construction and analysis to find broad relevance in both physics
and quantum computing.
Related papers
- SU(d)-Symmetric Random Unitaries: Quantum Scrambling, Error Correction,
and Machine Learning [11.861283136635837]
We show that in the presence of SU(d) symmetry, the local conserved quantities would exhibit residual values even at $t rightarrow infty$.
We also show that SU(d)-symmetric unitaries can be used to constructally optimal codes.
We derive an overpartameterization threshold via the quantum neural kernel.
arXiv Detail & Related papers (2023-09-28T16:12:31Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Quantum error correction meets continuous symmetries: fundamental
trade-offs and case studies [0.6526824510982799]
We study the fundamental competition between quantum error correction (QEC) and continuous symmetries.
Three meaningful measures of approximate symmetries in quantum channels are introduced and studied.
We derive various forms of trade-off relations between the QEC inaccuracy and all symmetry violation measures.
arXiv Detail & Related papers (2021-11-11T18:19:50Z) - Surface Code Design for Asymmetric Error Channels [55.41644538483948]
We introduce a surface code design based on the fact that bit flip and phase flip errors in quantum systems are asymmetric.
We show that, compared to symmetric surface codes, our asymmetric surface codes can provide almost double the pseudo-threshold rates.
As the asymmetry of the surface code increases, the advantage in the pseudo-threshold rates begins to saturate for any degree of asymmetry in the channel.
arXiv Detail & Related papers (2021-11-02T10:41:02Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Charge-conserving unitaries typically generate optimal covariant quantum
error-correcting codes [1.2183405753834557]
We consider the quantum error correction capability of random covariant codes.
In particular, we show that $U(1)$-covariant codes generated by Haar random $U(1)$-symmetric unitaries saturate the fundamental limits to leading order.
Our results hold for symmetric variants of unitary 2-designs, and comment on the convergence problem of charge-conserving random circuits.
arXiv Detail & Related papers (2021-02-23T18:11:15Z) - Quantum Error Mitigation using Symmetry Expansion [0.0]
Noise remains the biggest challenge for the practical applications of any near-term quantum devices.
We develop a general framework named symmetry expansion which provides a wide spectrum of symmetry-based error mitigation schemes.
We show that certain symmetry expansion schemes can achieve a smaller estimation bias than symmetry verification.
arXiv Detail & Related papers (2021-01-08T18:30:48Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - New perspectives on covariant quantum error correction [3.3811802886738462]
We prove new and powerful lower bounds on the infidelity of covariant quantum error correction.
Explicit lower bounds are derived for both erasure and depolarizing noises.
We also present a type of covariant codes which nearly saturates these lower bounds.
arXiv Detail & Related papers (2020-05-25T04:33:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.