AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep
Learning
- URL: http://arxiv.org/abs/2112.01637v1
- Date: Thu, 2 Dec 2021 23:33:15 GMT
- Title: AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep
Learning
- Authors: Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Praneeth
Vepakomma, Vivek Sharma, Ramesh Raskar
- Abstract summary: Split learning (SL) reduces client compute load by splitting the model training between client and server.
AdaSplit enables efficiently scaling SL to low resource scenarios by reducing bandwidth consumption and improving performance across heterogeneous clients.
- Score: 18.3841463794885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed deep learning frameworks like federated learning (FL) and its
variants are enabling personalized experiences across a wide range of web
clients and mobile/IoT devices. However, FL-based frameworks are constrained by
computational resources at clients due to the exploding growth of model
parameters (eg. billion parameter model). Split learning (SL), a recent
framework, reduces client compute load by splitting the model training between
client and server. This flexibility is extremely useful for low-compute setups
but is often achieved at cost of increase in bandwidth consumption and may
result in sub-optimal convergence, especially when client data is
heterogeneous. In this work, we introduce AdaSplit which enables efficiently
scaling SL to low resource scenarios by reducing bandwidth consumption and
improving performance across heterogeneous clients. To capture and benchmark
this multi-dimensional nature of distributed deep learning, we also introduce
C3-Score, a metric to evaluate performance under resource budgets. We validate
the effectiveness of AdaSplit under limited resources through extensive
experimental comparison with strong federated and split learning baselines. We
also present a sensitivity analysis of key design choices in AdaSplit which
validates the ability of AdaSplit to provide adaptive trade-offs across
variable resource budgets.
Related papers
- Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training.
Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods.
arXiv Detail & Related papers (2024-06-21T13:19:29Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - When Computing Power Network Meets Distributed Machine Learning: An
Efficient Federated Split Learning Framework [6.871107511111629]
CPN-FedSL is a Federated Split Learning (FedSL) framework over Computing Power Network (CPN)
We build a dedicated model to capture the basic settings and learning characteristics (e.g., latency, flow, convergence)
arXiv Detail & Related papers (2023-05-22T12:36:52Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - PFSL: Personalized & Fair Split Learning with Data & Label Privacy for
thin clients [0.5144809478361603]
PFSL is a new framework of distributed split learning where a large number of thin clients perform transfer learning in parallel.
We implement a lightweight step of personalization of client models to provide high performance for their respective data distributions.
Our accuracy far exceeds that of current algorithms SL and is very close to that of centralized learning on several real-life benchmarks.
arXiv Detail & Related papers (2023-03-19T10:38:29Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.