Microwave Amplification in a PT -symmetric-like Cavity Magnomechanical
System
- URL: http://arxiv.org/abs/2112.01727v1
- Date: Fri, 3 Dec 2021 05:40:56 GMT
- Title: Microwave Amplification in a PT -symmetric-like Cavity Magnomechanical
System
- Authors: Hua Jin, Zhi-Bo Yang, Jing-Wen Jin, Jian-Yu Liu, Hong-Yu Liu, and
Rong-Can Yang
- Abstract summary: We propose a scheme that can generate tunable magnomechanically induced amplification in a double-cavity parity-time-(PT -) symmetric-like magnomechanical system.
The phenomenon might have potential applications in the field of quantum information processing and quantum optical devices.
- Score: 9.994751756908546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme that can generate tunable magnomechanically induced
amplification in a double-cavity parity-time-(PT -) symmetric-like
magnomechanical system under a strong control and weak probe field. The system
consists of a ferromagnetic-material yttrium iron garnet (YIG) sphere placed in
a passive microwave cavity which is connected with another active cavity. We
reveal that ideally induced amplification of the microwave probe signal may
reach the maximum value 1000000 when cavity-cavity, cavity-magnon and
magnomechanical coupling strengths are nonzero simultaneously. The phenomenon
might have potential applications in the field of quantum information
processing and quantum optical devices. Besides, we also find the phenomena of
slow-light propagation. In this case, group speed delay of the light can
achieve 0.000035s, which can enhance some nonlinear effect. Moreover, due to
the relatively flat dispersion curve, the proposal may be applied to sensitive
optical switches, which plays an important role in storing photons and quantum
optical chips.
Related papers
- Squeezed Light via Exciton-Phonon Cavity QED [4.561414434532408]
We introduce a new mechanism and system to produce squeezed light using an exciton-phonon cavity-QED system.
We show that the strong exciton-phonon nonlinear interaction can induce a quadrature-squeezed cavity output field.
arXiv Detail & Related papers (2024-08-18T01:27:23Z) - Tunable phonon-photon coupling induces double MMIT and enhances slow
light in an atom-opto-magnomechanics [0.0]
We show double magnomechanically induced transparency (MMIT) in the probe output spectrum by exploiting the phonon-photon coupling strength.
This result may have potential applications in quantum information processing and communication.
arXiv Detail & Related papers (2023-11-29T15:36:03Z) - Zeptometer displacement sensing using cavity opto-magneto-mechanics [0.0]
We propose an opto-magno-mechanical setup for spatial displacement sensing.
We show that the optomechanical system can sense small changes in separation between the magnet layers.
arXiv Detail & Related papers (2023-02-14T02:26:01Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Microwave-optics Entanglement via Cavity Optomagnomechanics [4.24565587746027]
A new mechanism for preparing stationary entanglement between microwave and optical cavity fields is proposed.
The microwave-optics entanglement is robust against thermal noise.
It will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
arXiv Detail & Related papers (2022-08-23T02:58:10Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Entanglement enhanced and one-way steering in PT -symmetric cavity
magnomechanics [8.345632941376673]
We study creation of entanglement and quantum steering in a symmetric cavity magnomechanical system.
One-way quantum steering between magnon-phonon and photon-phonon modes can be obtained in the unbroken-PT -symmetric regime.
This work opens up a route to explore the characteristics of quantum entanglement and steering in magnomechanical systems.
arXiv Detail & Related papers (2020-08-10T02:46:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.