Detection of Large Vessel Occlusions using Deep Learning by Deforming
Vessel Tree Segmentations
- URL: http://arxiv.org/abs/2112.01797v1
- Date: Fri, 3 Dec 2021 09:07:29 GMT
- Title: Detection of Large Vessel Occlusions using Deep Learning by Deforming
Vessel Tree Segmentations
- Authors: Florian Thamm and Oliver Taubmann and Markus J\"urgens and Hendrik
Ditt and Andreas Maier
- Abstract summary: This work uses convolutional neural networks for case-level classification trained with elastic deformation of the vessel tree segmentation masks to artificially augment training data.
The neural network classifies the presence of an LVO and the affected hemisphere.
In a 5-fold cross validated ablation study, we demonstrate that the use of the suggested augmentation enables us to train robust models even from few data sets.
- Score: 5.408694811103598
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computed Tomography Angiography is a key modality providing insights into the
cerebrovascular vessel tree that are crucial for the diagnosis and treatment of
ischemic strokes, in particular in cases of large vessel occlusions (LVO).
Thus, the clinical workflow greatly benefits from an automated detection of
patients suffering from LVOs. This work uses convolutional neural networks for
case-level classification trained with elastic deformation of the vessel tree
segmentation masks to artificially augment training data. Using only masks as
the input to our model uniquely allows us to apply such deformations much more
aggressively than one could with conventional image volumes while retaining
sample realism.
The neural network classifies the presence of an LVO and the affected
hemisphere. In a 5-fold cross validated ablation study, we demonstrate that the
use of the suggested augmentation enables us to train robust models even from
few data sets. Training the EfficientNetB1 architecture on 100 data sets, the
proposed augmentation scheme was able to raise the ROC AUC to 0.85 from a
baseline value of 0.57 using no augmentation. The best performance was achieved
using a 3D-DenseNet yielding an AUC of 0.88. The augmentation had positive
impact in classification of the affected hemisphere as well, where the
3D-DenseNet reached an AUC of 0.93 on both sides.
Related papers
- Lesion-aware network for diabetic retinopathy diagnosis [28.228110579446227]
We propose a CNN-based diabetic retinopathy (DR) diagnosis network with attention mechanism involved, termed lesion-aware network.
The proposed LANet is constructed by embedding the LAM and FPM into the CNN decoders for DR-related information utilization.
Our method outperforms the mainstream methods with an area under curve of 0.967 in DR screening, and increases the overall average precision by 7.6%, 2.1%, and 1.2% in lesion segmentation on three datasets.
arXiv Detail & Related papers (2024-08-14T03:06:04Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
The objective is to leverage state-of-the-art convolutional neural networks (CNNs) on a large dataset of brain MRI scans for segmentation.
The proposed methodology applies pre-processing techniques for enhanced performance and generalizability.
arXiv Detail & Related papers (2024-04-06T15:09:49Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.