Multilingual training for Software Engineering
- URL: http://arxiv.org/abs/2112.02043v2
- Date: Mon, 6 Dec 2021 01:47:57 GMT
- Title: Multilingual training for Software Engineering
- Authors: Toufique Ahmed and Premkumar Devanbu
- Abstract summary: We present evidence suggesting that human-written code in different languages (which performs the same function) is rather similar.
We study this for 3 different tasks: code summarization, code retrieval, and function naming.
This data-augmenting approach is broadly compatible with different tasks, languages, and machine-learning models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Well-trained machine-learning models, which leverage large amounts of
open-source software data, have now become an interesting approach to
automating many software engineering tasks. Several SE tasks have all been
subject to this approach, with performance gradually improving over the past
several years with better models and training methods. More, and more diverse,
clean, labeled data is better for training; but constructing good-quality
datasets is time-consuming and challenging. Ways of augmenting the volume and
diversity of clean, labeled data generally have wide applicability. For some
languages (e.g., Ruby) labeled data is less abundant; in others (e.g.,
JavaScript) the available data maybe more focused on some application domains,
and thus less diverse. As a way around such data bottlenecks, we present
evidence suggesting that human-written code in different languages (which
performs the same function), is rather similar, and particularly preserving of
identifier naming patterns; we further present evidence suggesting that
identifiers are a very important element of training data for software
engineering tasks. We leverage this rather fortuitous phenomenon to find
evidence that available multilingual training data (across different languages)
can be used to amplify performance. We study this for 3 different tasks: code
summarization, code retrieval, and function naming. We note that this
data-augmenting approach is broadly compatible with different tasks, languages,
and machine-learning models.
Related papers
- Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - Learning Transfers over Several Programming Languages [5.350495525141013]
Cross-lingual transfer uses data from a source language to improve model performance on a target language.
This paper reports extensive experiments on four tasks using a transformer-based large language model and 11 to 41 programming languages.
We find that learning transfers well across several programming languages.
arXiv Detail & Related papers (2023-10-25T19:04:33Z) - XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence [9.673614921946932]
This paper introduces XLCoST, Cross-Lingual Code SnippeT dataset, a new benchmark dataset for cross-lingual code intelligence.
Our dataset contains fine-grained parallel data from 8 languages, and supports 10 cross-lingual code tasks.
arXiv Detail & Related papers (2022-06-16T22:49:39Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Towards Best Practices for Training Multilingual Dense Retrieval Models [54.91016739123398]
We focus on the task of monolingual retrieval in a variety of typologically diverse languages using one such design.
Our study is organized as a "best practices" guide for training multilingual dense retrieval models.
arXiv Detail & Related papers (2022-04-05T17:12:53Z) - Breaking Down Multilingual Machine Translation [74.24795388967907]
We show that multilingual training is beneficial to encoders in general, while it only benefits decoders for low-resource languages (LRLs)
Our many-to-one models for high-resource languages and one-to-many models for LRLs outperform the best results reported by Aharoni et al.
arXiv Detail & Related papers (2021-10-15T14:57:12Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
We enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models.
We use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks.
We achieve impressive improvements (> 20% on goal accuracy) on the parallel MultiWoZ dataset and Multilingual WoZ dataset.
arXiv Detail & Related papers (2021-09-28T11:22:38Z) - Cross-Lingual Adaptation for Type Inference [29.234418962960905]
We propose a cross-lingual adaptation framework, PLATO, to transfer a deep learning-based type inference procedure across weakly typed languages.
By leveraging data from strongly typed languages, PLATO improves the perplexity of the backbone cross-programming-language model.
arXiv Detail & Related papers (2021-07-01T00:20:24Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z) - Automated Source Code Generation and Auto-completion Using Deep
Learning: Comparing and Discussing Current Language-Model-Related Approaches [0.0]
This paper compares different deep learning architectures to create and use language models based on programming code.
We discuss each approach's different strengths and weaknesses and what gaps we find to evaluate the language models or apply them in a real programming context.
arXiv Detail & Related papers (2020-09-16T15:17:04Z) - Temporally Correlated Task Scheduling for Sequence Learning [143.70523777803723]
In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks.
We introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training.
Our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.
arXiv Detail & Related papers (2020-07-10T10:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.