Sequential Randomized Smoothing for Adversarially Robust Speech
Recognition
- URL: http://arxiv.org/abs/2112.03000v1
- Date: Fri, 5 Nov 2021 21:51:40 GMT
- Title: Sequential Randomized Smoothing for Adversarially Robust Speech
Recognition
- Authors: Raphael Olivier and Bhiksha Raj
- Abstract summary: We show that our strongest defense is robust to all attacks that use inaudible noise, and can only be broken with very high distortion.
Our paper overcomes some of these challenges by leveraging speech-specific tools like enhancement and ROVER voting to design an ASR model that is robust to perturbations.
- Score: 26.96883887938093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Automatic Speech Recognition has been shown to be vulnerable to
adversarial attacks, defenses against these attacks are still lagging.
Existing, naive defenses can be partially broken with an adaptive attack. In
classification tasks, the Randomized Smoothing paradigm has been shown to be
effective at defending models. However, it is difficult to apply this paradigm
to ASR tasks, due to their complexity and the sequential nature of their
outputs. Our paper overcomes some of these challenges by leveraging
speech-specific tools like enhancement and ROVER voting to design an ASR model
that is robust to perturbations. We apply adaptive versions of state-of-the-art
attacks, such as the Imperceptible ASR attack, to our model, and show that our
strongest defense is robust to all attacks that use inaudible noise, and can
only be broken with very high distortion.
Related papers
- Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - AudioFool: Fast, Universal and synchronization-free Cross-Domain Attack
on Speech Recognition [0.9913418444556487]
We investigate the needed properties of robust attacks compatible with the Over-The-Air (OTA) model.
We design a method of generating attacks with arbitrary such desired properties.
We evaluate our method on standard keyword classification tasks and analyze it in OTA.
arXiv Detail & Related papers (2023-09-20T16:59:22Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z) - Watch What You Pretrain For: Targeted, Transferable Adversarial Examples
on Self-Supervised Speech Recognition models [27.414693266500603]
A targeted adversarial attack produces audio samples that can force an Automatic Speech Recognition system to output attacker-chosen text.
Recent work has shown that transferability against large ASR models is very difficult.
We show that modern ASR architectures, specifically ones based on Self-Supervised Learning, are in fact vulnerable to transferability.
arXiv Detail & Related papers (2022-09-17T15:01:26Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - WaveGuard: Understanding and Mitigating Audio Adversarial Examples [12.010555227327743]
We introduce WaveGuard: a framework for detecting adversarial inputs crafted to attack ASR systems.
Our framework incorporates audio transformation functions and analyses the ASR transcriptions of the original and transformed audio to detect adversarial inputs.
arXiv Detail & Related papers (2021-03-04T21:44:37Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.