Functional Renormalization analysis of Bose-Einstien Condensation
through complex interaction in Harmonic Oscillator; Can Bendixson criteria be
extended to complex time?
- URL: http://arxiv.org/abs/2112.03035v4
- Date: Fri, 18 Feb 2022 14:27:15 GMT
- Title: Functional Renormalization analysis of Bose-Einstien Condensation
through complex interaction in Harmonic Oscillator; Can Bendixson criteria be
extended to complex time?
- Authors: Vinayak M Kulkarni
- Abstract summary: Action renormalization will capture the phase of the wave functions.
The unitary and non-unitary regimes are discussed to connect with functional calculations.
A dual space Left-Right formulation is worked out in functional bosonic variables to derive the flow equation for scale dependent action.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An arbitrary form of complex potential perturbation in an oscillator consists
of many exciting questions in open quantum systems. These often provide
valuable insights in a realistic scenario when a quantum system interacts with
external environments. Action renormalization will capture the phase of the
wave functions; hence we construct wave function from Bethe ansatz and
Frobenius methods. The unitary and non-unitary regimes are discussed to connect
with functional calculations. We present a functional renormalization
calculation for a non-hermitian oscillator. A dual space Left-Right formulation
is worked out in functional bosonic variables to derive the flow equation for
scale dependent action. We show equivalence between vertex operator and
permutation operators. The results can be compared with Wentzel Kramers
Brillouin(WKB) calculation. We formally construct the Bosonic coherent states
in the dual space;breaking symmetry will lead to anyonic coherent states. The
limit cycle in renormalization trajectories for complex flow parameters,
especially in extended, complex time limits indicates the need for revisiting
the Bendixson theorem.
Related papers
- Decoupling of External and Internal Dynamics in Driven Two-level Systems [49.96265870315999]
We show how a laser driven two-level system can be decoupled into a set of equations acting only on the external degrees of freedom for each state.
We give a way of characterizing the solvability of this family of problems by appealing to a classical oscillator with time-dependent damping.
We show that chirping of the driving fields phase emerges naturally as a means of compensating the Ehrenfest/mean-value part of the detuning operator's dynamics.
arXiv Detail & Related papers (2024-06-03T16:42:28Z) - Duality between the quantum inverted harmonic oscillator and inverse
square potentials [0.0]
We show how the quantum mechanics of the inverted harmonic oscillator can be mapped to the quantum mechanics of a particle.
We demonstrate this by relating both of these systems to the Berry-Keating system with hamiltonian $H=(xp+px)/2$.
Our map does not require the boundary condition to be self-adjoint, as can be appropriate for systems that involve the absorption or emission of particles.
arXiv Detail & Related papers (2024-02-21T16:24:16Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Many-body probes for quantum features of spacetime [3.9198548406564604]
In this work we inspect the capacity for correlated many body systems to probe non-classicalities of spacetime through modifications of the commutation relations.
We numerically show that it is possible to have superquadratic scaling of a non-classical phase term, arising from the modification to the commutation relations.
arXiv Detail & Related papers (2021-11-23T17:14:30Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.