On Complexity of 1-Center in Various Metrics
- URL: http://arxiv.org/abs/2112.03222v3
- Date: Sun, 9 Jul 2023 23:32:47 GMT
- Title: On Complexity of 1-Center in Various Metrics
- Authors: Amir Abboud, Mohammad Hossein Bateni, Vincent Cohen-Addad, Karthik C.
S., and Saeed Seddighin
- Abstract summary: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$.
We study the complexity of this problem in $d$-dimensional $ell_p$-metrics and in edit and Ulam metrics over strings of length $d$.
- Score: 20.92192456060298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the classic 1-center problem: Given a set $P$ of $n$ points in a
metric space find the point in $P$ that minimizes the maximum distance to the
other points of $P$. We study the complexity of this problem in $d$-dimensional
$\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our
results for the 1-center problem may be classified based on $d$ as follows.
$\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that
when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem
in any of the $\ell_p$-metrics, or in edit or Ulam metrics.
$\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower
bound to rule out subquartic algorithms for 1-center problem in edit metric
(assuming Quantified SETH). On the other hand, we give a
$(1+\epsilon)$-approximation for 1-center in Ulam metric with running time
$\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$.
We also strengthen some of the above lower bounds by allowing approximations
or by reducing the dimension $d$, but only against a weaker class of algorithms
which list all requisite solutions. Moreover, we extend one of our hardness
results to rule out subquartic algorithms for the well-studied 1-median problem
in the edit metric, where given a set of $n$ strings each of length $n$, the
goal is to find a string in the set that minimizes the sum of the edit
distances to the rest of the strings in the set.
Related papers
- Nearly Linear Sparsification of $\ell_p$ Subspace Approximation [47.790126028106734]
A popular approach to cope with the NP-hardness of the $ell_p$ subspace approximation problem is to compute a strong coreset.
We obtain the first algorithm for constructing a strong coreset for $ell_p$ subspace approximation with a nearly optimal dependence on the rank parameter $k$.
Our techniques also lead to the first nearly optimal online strong coresets for $ell_p$ subspace approximation with similar bounds as the offline setting.
arXiv Detail & Related papers (2024-07-03T16:49:28Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
We show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
We also show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
arXiv Detail & Related papers (2023-05-12T08:43:28Z) - Towards Optimal Lower Bounds for k-median and k-means Coresets [25.713987341159918]
Given a set of points in a metric space, the $(k,z)$-clustering problem consists of finding a set of $k$ points called centers.
We show that any coreset for $(k,z)$ clustering must consist of at least $Omega(k varepsilon-2 log n)$ and $Omega(k varepsilon-2 D)$ points.
arXiv Detail & Related papers (2022-02-25T16:13:28Z) - Locally Private $k$-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error [10.632986841188]
We bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms.
It is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation.
arXiv Detail & Related papers (2021-05-31T14:41:40Z) - On Efficient Low Distortion Ultrametric Embedding [18.227854382422112]
A widely-used method to preserve the underlying hierarchical structure of the data is to find an embedding of the data into a tree or an ultrametric.
In this paper, we provide a new algorithm which takes as input a set of points isometric in $mathbbRd2 (for universal constant $rho>1$) to output an ultrametric $Delta.
We show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
arXiv Detail & Related papers (2020-08-15T11:06:45Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Coreset-based Strategies for Robust Center-type Problems [0.6875312133832077]
We devise coreset-based strategies for the two problems which yield efficient sequential, MapReduce, and Streaming algorithms.
For wide ranges of the parameters $k,zepsilon, D$, we obtain a sequential algorithm with running time linear in $|V|$, and MapReduce/Streaming algorithms with few rounds/passes and substantially sublinear local/working memory.
arXiv Detail & Related papers (2020-02-18T10:04:08Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
We study the fixed-support Wasserstein barycenter problem (FS-WBP)
We develop a provably fast textitdeterministic variant of the celebrated iterative Bregman projection (IBP) algorithm, named textscFastIBP.
arXiv Detail & Related papers (2020-02-12T03:40:52Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.