Learning to Select the Next Reasonable Mention for Entity Linking
- URL: http://arxiv.org/abs/2112.04104v1
- Date: Wed, 8 Dec 2021 04:12:50 GMT
- Title: Learning to Select the Next Reasonable Mention for Entity Linking
- Authors: Jian Sun, Yu Zhou, Chengqing Zong
- Abstract summary: We propose a novel model, called DyMen, to dynamically adjust the subsequent linking target based on the previously linked entities.
We sample mention by sliding window to reduce the action sampling space of reinforcement learning and maintain the semantic coherence of mention.
- Score: 39.112602039647896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity linking aims to establish a link between entity mentions in a document
and the corresponding entities in knowledge graphs (KGs). Previous work has
shown the effectiveness of global coherence for entity linking. However, most
of the existing global linking methods based on sequential decisions focus on
how to utilize previously linked entities to enhance the later decisions. In
those methods, the order of mention is fixed, making the model unable to adjust
the subsequent linking targets according to the previously linked results,
which will cause the previous information to be unreasonably utilized. To
address the problem, we propose a novel model, called DyMen, to dynamically
adjust the subsequent linking target based on the previously linked entities
via reinforcement learning, enabling the model to select a link target that can
fully use previously linked information. We sample mention by sliding window to
reduce the action sampling space of reinforcement learning and maintain the
semantic coherence of mention. Experiments conducted on several benchmark
datasets have shown the effectiveness of the proposed model.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Towards Better Graph-based Cross-document Relation Extraction via Non-bridge Entity Enhancement and Prediction Debiasing [30.204313638661255]
Cross-document Relation Extraction aims to predict the relation between target entities located in different documents.
We propose a novel graph-based cross-document RE model with non-bridge entity enhancement and prediction debiasing.
arXiv Detail & Related papers (2024-06-24T11:08:28Z) - Entity Linking and Discovery via Arborescence-based Supervised
Clustering [35.93568319872986]
We present novel training and inference procedures that fully utilize mention-to-mention affinities.
We show that this method gracefully extends to entity discovery.
We evaluate our approach on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset.
arXiv Detail & Related papers (2021-09-02T23:05:58Z) - Generative Relation Linking for Question Answering over Knowledge Bases [12.778133758613773]
We propose a novel approach for relation linking framing it as a generative problem.
We extend such sequence-to-sequence models with the idea of infusing structured data from the target knowledge base.
We train the model with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a knowledge validation step.
arXiv Detail & Related papers (2021-08-16T20:33:43Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - End-to-End Hierarchical Relation Extraction for Generic Form
Understanding [0.6299766708197884]
We present a novel deep neural network to jointly perform both entity detection and link prediction.
Our model extends the Multi-stage Attentional U-Net architecture with the Part-Intensity Fields and Part-Association Fields for link prediction.
We demonstrate the effectiveness of the model on the Form Understanding in Noisy Scanned Documents dataset.
arXiv Detail & Related papers (2021-06-02T06:51:35Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Clustering-based Inference for Biomedical Entity Linking [40.78384867437563]
We introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions.
In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy.
arXiv Detail & Related papers (2020-10-21T19:16:27Z) - Pose And Joint-Aware Action Recognition [87.4780883700755]
We present a new model for joint-based action recognition, which first extracts motion features from each joint separately through a shared motion encoder.
Our joint selector module re-weights the joint information to select the most discriminative joints for the task.
We show large improvements over the current state-of-the-art joint-based approaches on JHMDB, HMDB, Charades, AVA action recognition datasets.
arXiv Detail & Related papers (2020-10-16T04:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.