Mixed membership distribution-free model
- URL: http://arxiv.org/abs/2112.04389v5
- Date: Fri, 5 Apr 2024 08:37:35 GMT
- Title: Mixed membership distribution-free model
- Authors: Huan Qing, Jingli Wang,
- Abstract summary: We consider the problem of community detection in overlapping weighted networks, where nodes can belong to multiple communities and edge weights can be finite real numbers.
To model such complex networks, we propose a general framework - the mixed membership distribution-free (MMDF) model.
We use an efficient spectral algorithm with a theoretical guarantee of convergence rate to estimate community memberships under the model.
- Score: 0.4972323953932129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of community detection in overlapping weighted networks, where nodes can belong to multiple communities and edge weights can be finite real numbers. To model such complex networks, we propose a general framework - the mixed membership distribution-free (MMDF) model. MMDF has no distribution constraints of edge weights and can be viewed as generalizations of some previous models, including the well-known mixed membership stochastic blockmodels. Especially, overlapping signed networks with latent community structures can also be generated from our model. We use an efficient spectral algorithm with a theoretical guarantee of convergence rate to estimate community memberships under the model. We also propose the fuzzy weighted modularity to evaluate the quality of community detection for overlapping weighted networks with positive and negative edge weights. We then provide a method to determine the number of communities for weighted networks by taking advantage of our fuzzy weighted modularity. Numerical simulations and real data applications are carried out to demonstrate the usefulness of our mixed membership distribution-free model and our fuzzy weighted modularity.
Related papers
- Bipartite mixed membership distribution-free model. A novel model for community detection in overlapping bipartite weighted networks [0.4972323953932129]
We introduce a novel model, the Bipartite Mixed Membership Distribution-Free (BiMMDF) model.
Our model allows an adjacency matrix to follow any distribution as long as its expectation has a block structure related to node membership.
An efficient algorithm with a theoretical guarantee of consistent estimation is applied to fit BiMMDF.
arXiv Detail & Related papers (2022-11-02T06:26:47Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
We propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM)
UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions.
Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions.
arXiv Detail & Related papers (2022-07-07T16:57:21Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Bayesian community detection for networks with covariates [16.230648949593153]
"Community detection" has arguably received the most attention in the scientific community.
We propose a block model with a co-dependent random partition prior.
Our model has the ability to learn the number of the communities via posterior inference without having to assume it to be known.
arXiv Detail & Related papers (2022-03-04T01:58:35Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Community models for networks observed through edge nominations [6.442024233731203]
Communities are a common and widely studied structure in networks, typically under the assumption that the network is fully and correctly observed.
We propose a general model for a class of network sampling mechanisms based on recording edges via querying nodes.
We show community detection can be performed by spectral clustering under this general class of models.
arXiv Detail & Related papers (2020-08-09T04:53:13Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z) - Fragmentation Coagulation Based Mixed Membership Stochastic Blockmodel [17.35449041036449]
Mixed-Membership Blockmodel(MMSB) is proposed as one of the state-of-the-art Bayesian methods suitable for learning the complex hidden structure underlying the network data.
Our model performs entity-based clustering to capture the community information for entities and linkage-based clustering to derive the group information for links simultaneously.
By integrating the community structure with the group compatibility matrix we derive a generalized version of MMSB.
arXiv Detail & Related papers (2020-01-17T22:02:23Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.