Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study
- URL: http://arxiv.org/abs/2112.04913v1
- Date: Wed, 8 Dec 2021 14:12:24 GMT
- Title: Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study
- Authors: Alexander Shevtsov, Christos Tzagkarakis, Despoina Antonakaki, Sotiris
Ioannidis
- Abstract summary: This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
- Score: 72.61531092316092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Twitter is one of the most popular social networks attracting millions of
users, while a considerable proportion of online discourse is captured. It
provides a simple usage framework with short messages and an efficient
application programming interface (API) enabling the research community to
study and analyze several aspects of this social network. However, the Twitter
usage simplicity can lead to malicious handling by various bots. The malicious
handling phenomenon expands in online discourse, especially during the
electoral periods, where except the legitimate bots used for dissemination and
communication purposes, the goal is to manipulate the public opinion and the
electorate towards a certain direction, specific ideology, or political party.
This paper focuses on the design of a novel system for identifying Twitter bots
based on labeled Twitter data. To this end, a supervised machine learning (ML)
framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm,
where the hyper-parameters are tuned via cross-validation. Our study also
deploys Shapley Additive Explanations (SHAP) for explaining the ML model
predictions by calculating feature importance, using the game theoretic-based
Shapley values. Experimental evaluation on distinct Twitter datasets
demonstrate the superiority of our approach, in terms of bot detection
accuracy, when compared against a recent state-of-the-art Twitter bot detection
method.
Related papers
- Entendre, a Social Bot Detection Tool for Niche, Fringe, and Extreme Social Media [1.4913052010438639]
We introduce Entendre, an open-access, scalable, and platform-agnostic bot detection framework.
We exploit the idea that most social platforms share a generic template, where users can post content, approve content, and provide a bio.
To demonstrate Entendre's effectiveness, we used it to explore the presence of bots among accounts posting racist content on the now-defunct right-wing platform Parler.
arXiv Detail & Related papers (2024-08-13T13:50:49Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Social platforms such as Twitter are under siege from a multitude of fraudulent users.
Due to the structure of social networks, the majority of methods are based on the graph neural network(GNN), which is susceptible to attacks.
We propose a node injection-based adversarial attack method designed to deceive bot detection models.
arXiv Detail & Related papers (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitter has become a target for bots and fake accounts, resulting in the spread of false information and manipulation.
This paper introduces a semi-automatic machine learning pipeline (SAMLP) designed to address the challenges correlated with machine learning model development.
We develop a comprehensive bot detection model named BotArtist, based on user profile features.
arXiv Detail & Related papers (2023-05-31T09:12:35Z) - From Online Behaviours to Images: A Novel Approach to Social Bot
Detection [0.3867363075280544]
A particular type of social accounts is known to promote unreputable content, hyperpartisan, and propagandistic information.
We propose a novel approach to bot detection: we first propose a new algorithm that transforms the sequence of actions that an account performs into an image.
We compare our performances with state-of-the-art results for bot detection on genuine accounts / bot accounts datasets well known in the literature.
arXiv Detail & Related papers (2023-04-15T11:36:50Z) - Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal
Misinformation [83.2079454464572]
This paper describes our approach to the Image-Text Inconsistency Detection challenge of the DARPA Semantic Forensics (SemaFor) Program.
We collect Twitter-COMMs, a large-scale multimodal dataset with 884k tweets relevant to the topics of Climate Change, COVID-19, and Military Vehicles.
We train our approach, based on the state-of-the-art CLIP model, leveraging automatically generated random and hard negatives.
arXiv Detail & Related papers (2021-12-16T03:37:20Z) - BotSpot: Deep Learning Classification of Bot Accounts within Twitter [2.099922236065961]
The openness feature of Twitter allows programs to generate and control Twitter accounts automatically via the Twitter API.
These accounts, which are known as bots, can automatically perform actions such as tweeting, re-tweeting, following, unfollowing, or direct messaging other accounts.
We introduce a novel bot detection approach using deep learning, with the Multi-layer Perceptron Neural Networks and nine features of a bot account.
arXiv Detail & Related papers (2021-09-08T15:17:10Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
Malicious actors create inauthentic social media accounts controlled in part by algorithms, known as social bots, to disseminate misinformation and agitate online discussion.
We show that different types of bots are characterized by different behavioral features.
We propose a new supervised learning method that trains classifiers specialized for each class of bots and combines their decisions through the maximum rule.
arXiv Detail & Related papers (2020-06-11T22:59:59Z) - Twitter Bot Detection Using Bidirectional Long Short-term Memory Neural
Networks and Word Embeddings [6.09170287691728]
This paper develops a recurrent neural model with word embeddings to distinguish Twitter bots from human accounts.
Experiments show that our approach can achieve competitive performance compared with existing state-of-the-art bot detection systems.
arXiv Detail & Related papers (2020-02-03T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.