A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis
- URL: http://arxiv.org/abs/2112.05745v1
- Date: Fri, 10 Dec 2021 18:56:16 GMT
- Title: A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis
- Authors: Thomas Lew, Lucas Janson, Riccardo Bonalli, Marco Pavone
- Abstract summary: General-purpose reachability analysis remains a notoriously challenging problem with applications ranging from neural network verification to safety analysis of dynamical systems.
By sampling inputs, evaluating their images in the true reachable set, and taking their $epsilon$-padded convex hull as a set estimator, this algorithm applies to general problem settings and is simple to implement.
This analysis informs algorithmic design to obtain an $epsilon$-close reachable set approximation with high probability.
On a neural network verification task, we show that this approach is more accurate and significantly faster than prior work.
- Score: 32.488975902387395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we analyze an efficient sampling-based algorithm for
general-purpose reachability analysis, which remains a notoriously challenging
problem with applications ranging from neural network verification to safety
analysis of dynamical systems. By sampling inputs, evaluating their images in
the true reachable set, and taking their $\epsilon$-padded convex hull as a set
estimator, this algorithm applies to general problem settings and is simple to
implement. Our main contribution is the derivation of asymptotic and
finite-sample accuracy guarantees using random set theory. This analysis
informs algorithmic design to obtain an $\epsilon$-close reachable set
approximation with high probability, provides insights into which reachability
problems are most challenging, and motivates safety-critical applications of
the technique. On a neural network verification task, we show that this
approach is more accurate and significantly faster than prior work. Informed by
our analysis, we also design a robust model predictive controller that we
demonstrate in hardware experiments.
Related papers
- It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Reachability Analysis of Convolutional Neural Networks [10.384532888747993]
We propose an approach to compute the exact reachable sets of a network given an input domain.
Our approach is also capable of backtracking to the input domain given an output reachable set.
An approach for fast analysis is also introduced, which conducts fast computation of reachable sets.
arXiv Detail & Related papers (2021-06-22T21:42:00Z) - Towards Large Scale Automated Algorithm Design by Integrating Modular
Benchmarking Frameworks [0.9281671380673306]
We present a first proof-of-concept use-case that demonstrates the efficiency of the algorithm framework ParadisEO with the automated algorithm configuration tool irace and the experimental platform IOHprofiler.
Key advantages of our pipeline are fast evaluation times, the possibility to generate rich data sets, and a standardized interface that can be used to benchmark very broad classes of sampling-based optimizations.
arXiv Detail & Related papers (2021-02-12T10:47:00Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.