An Optimized Quantum Implementation of ISD on Scalable Quantum Resources
- URL: http://arxiv.org/abs/2112.06157v1
- Date: Sun, 12 Dec 2021 06:01:10 GMT
- Title: An Optimized Quantum Implementation of ISD on Scalable Quantum Resources
- Authors: Andre Esser, Sergi Ramos-Calderer, Emanuele Bellini, Jos\'e I. Latorre
and Marc Manzano
- Abstract summary: We show that Prange's ISD algorithm can be implemented rather efficiently on a quantum computer.
We leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs.
- Score: 2.274915755738124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The security of code based constructions is usually assessed by Information
Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification
yields an asymptotic square root gain over the classical analogue. However, it
is still unclear whether a real quantum circuit could yield actual improvements
or suffer an enormous overhead due to its implementation. This leads to
different considerations of these quantum attacks in the security analysis of
code based proposals. In this work we clarify this doubt by giving the first
quantum circuit design of the fully-fledged ISD procedure, an implementation in
the quantum simulation library Qibo as well as precise estimates of its
complexities. We show that against common belief, Prange's ISD algorithm can be
implemented rather efficiently on a quantum computer, namely with only a
logarithmic overhead in circuit depth compared to a classical implementation.
As another major contribution, we leverage the idea of classical
co-processors to design hybrid classical-quantum trade-offs, that allow to
tailor the necessary qubits to any available amount, while still providing
quantum speedups. Interestingly, when constraining the width of the circuit
instead of its depth we are able to overcome previous optimality results on
constraint quantum search.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation [12.591173729459427]
We show that it is possible to leverage a pre-trained neural network to directly generate the QSP circuit for arbitrary quantum state.
Our study makes a steady step towards a universal neural designer for approximate QSP.
arXiv Detail & Related papers (2024-08-10T04:39:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.