Risk and optimal policies in bandit experiments
- URL: http://arxiv.org/abs/2112.06363v1
- Date: Mon, 13 Dec 2021 00:41:19 GMT
- Title: Risk and optimal policies in bandit experiments
- Authors: Karun Adusumilli
- Abstract summary: This paper provides a decision theoretic analysis of bandit experiments.
The bandit setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible.
For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper provides a decision theoretic analysis of bandit experiments. The
bandit setting corresponds to a dynamic programming problem, but solving this
directly is typically infeasible. Working within the framework of diffusion
asymptotics, we define a suitable notion of asymptotic Bayes risk for bandit
settings. For normally distributed rewards, the minimal Bayes risk can be
characterized as the solution to a nonlinear second-order partial differential
equation (PDE). Using a limit of experiments approach, we show that this PDE
characterization also holds asymptotically under both parametric and
non-parametric distribution of the rewards. The approach further describes the
state variables it is asymptotically sufficient to restrict attention to, and
therefore suggests a practical strategy for dimension reduction. The upshot is
that we can approximate the dynamic programming problem defining the bandit
setting with a PDE which can be efficiently solved using sparse matrix
routines. We derive near-optimal policies from the numerical solutions to these
equations. The proposed policies substantially dominate existing methods such
Thompson sampling. The framework also allows for substantial generalizations to
the bandit problem such as time discounting and pure exploration motives.
Related papers
- Towards Principled, Practical Policy Gradient for Bandits and Tabular MDPs [9.58750210024265]
We consider (stochastic) softmax policy gradient (PG) methods for bandits and Markov decision processes (MDPs)
We show that the proposed algorithm offers similar theoretical guarantees as the state-of-the art results, but does not require the knowledge of oracle-like quantities.
For the multi-armed bandit setting, our techniques result in a theoretically-principled PG algorithm that does not require explicit exploration, the knowledge of the reward gap, the reward distributions, or the noise.
arXiv Detail & Related papers (2024-05-21T18:12:39Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Thompson Exploration with Best Challenger Rule in Best Arm
Identification [66.33448474838342]
We study the fixed-confidence best arm identification problem in the bandit framework.
We propose a novel policy that combines Thompson sampling with a computationally efficient approach known as the best challenger rule.
arXiv Detail & Related papers (2023-10-01T01:37:02Z) - Indexability is Not Enough for Whittle: Improved, Near-Optimal
Algorithms for Restless Bandits [30.532795983761314]
We study the problem of planning restless multi-armed bandits (RMABs) with multiple actions.
We first show that Whittle index policies can fail in simple and practically relevant settings.
We then propose an alternate planning algorithm based on the mean-field method.
arXiv Detail & Related papers (2022-10-31T19:35:15Z) - Risk-aware linear bandits with convex loss [0.0]
We propose an optimistic UCB algorithm to learn optimal risk-aware actions, with regret guarantees similar to those of generalized linear bandits.
This approach requires solving a convex problem at each round of the algorithm, which we can relax by allowing only approximated solution obtained by online gradient descent.
arXiv Detail & Related papers (2022-09-15T09:09:53Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
We develop Thompson Sampling-style algorithms for mean-variance MAB.
We also provide comprehensive regret analyses for Gaussian and Bernoulli bandits.
Our algorithms significantly outperform existing LCB-based algorithms for all risk tolerances.
arXiv Detail & Related papers (2020-02-01T15:33:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.