Minimal Energy Cost to Initialize a Quantum Bit with Tolerable Error
- URL: http://arxiv.org/abs/2112.07311v1
- Date: Tue, 14 Dec 2021 11:35:58 GMT
- Title: Minimal Energy Cost to Initialize a Quantum Bit with Tolerable Error
- Authors: Yu-Han Ma, Jin-Fu Chen, C. P. Sun, and Hui Dong
- Abstract summary: Landauer's principle imposes a fundamental limit on the energy cost to perfectly initialize a classical bit.
We find a raise-up of energy cost by $mathcalL2(epsilon)/tau$ from the Landaeur's limit.
optimal protocol to reach the bound of minimal energy cost is proposed.
- Score: 2.6930669375071323
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Landauer's principle imposes a fundamental limit on the energy cost to
perfectly initialize a classical bit, which is only reached under the ideal
operation with infinite-long time. The question on the cost in the practical
operation for a quantum bit (qubit) has been posted under the constraint by the
finiteness of operation time. We discover a raise-up of energy cost by
$\mathcal{L}^{2}(\epsilon)/\tau$ from the Landaeur's limit ($k_{B}T\ln2$) for a
finite-time $\tau$ initialization with an error probability $\epsilon$. The
thermodynamic length $\mathcal{L}(\epsilon)$ between the states before and
after initializing in the parametric space increases monotonously as the error
decreases. For example, in the constant dissipation coefficient ($\gamma_{0}$)
case, the minimal additional cost is $0.997k_{B}T/(\gamma_{0}\tau)$ for
$\epsilon=1\%$ and $1.288k_{B}T/(\gamma_{0}\tau)$ for $\epsilon=0.1\%$.
Furthermore, the optimal protocol to reach the bound of minimal energy cost is
proposed for the qubit initialization realized via a finite-time isothermal
process.
Related papers
- Exact Solvability Of Entanglement For Arbitrary Initial State in an Infinite-Range Floquet System [0.5371337604556311]
We introduce an $N$-spin Floquet model with infinite-range Ising interactions.
We numerically show that the values $langle Srangle/S_Max rightarrow 1$ for Ising strength deviates from $1$ for arbitrary initial states even though the thermodynamic limit does not exist in our model.
arXiv Detail & Related papers (2024-11-25T18:55:05Z) - Quantum state preparation with optimal T-count [2.1386090295255333]
We show how many T gates are needed to approximate an arbitrary $n$-qubit quantum state to within error $varepsilon$.
We also show that this is the optimal T-count for implementing an arbitrary diagonal $n$-qubit unitary to within error $varepsilon$.
arXiv Detail & Related papers (2024-11-07T15:29:33Z) - The classical limit of Quantum Max-Cut [0.18416014644193066]
We show that the limit of large quantum spin $S$ should be understood as a semiclassical limit.
We present two families of classical approximation algorithms for $mathrmQMaxCut_S$ based on rounding the output of a semidefinite program to a product of Bloch coherent states.
arXiv Detail & Related papers (2024-01-23T18:53:34Z) - A Quantum Approximation Scheme for k-Means [0.16317061277457]
We give a quantum approximation scheme for the classical $k$-means clustering problem in the QRAM model.
Our quantum algorithm runs in time $tildeO left( 2tildeO(frackvarepsilon) eta2 dright)$.
Unlike previous works on unsupervised learning, our quantum algorithm does not require quantum linear algebra subroutines.
arXiv Detail & Related papers (2023-08-16T06:46:37Z) - Tight Bounds for Quantum Phase Estimation and Related Problems [0.90238471756546]
We show that a phase estimation algorithm with precision $delta$ and error probability $epsilon$ has cost $Omegaleft(frac1deltalog1epsilonright)$.
We also show that having lots advice (applications of the advice-preparing unitary) does not significantly reduce cost, and neither does knowledge of the eigenbasis of $U$.
arXiv Detail & Related papers (2023-05-08T17:46:01Z) - Estimating the minimizer and the minimum value of a regression function
under passive design [72.85024381807466]
We propose a new method for estimating the minimizer $boldsymbolx*$ and the minimum value $f*$ of a smooth and strongly convex regression function $f$.
We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $boldsymbolz_n$, and for the risk of estimating $f*$.
arXiv Detail & Related papers (2022-11-29T18:38:40Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Stochastic Shortest Path: Minimax, Parameter-Free and Towards
Horizon-Free Regret [144.6358229217845]
We study the problem of learning in the shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state.
We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus.
We prove that EB-SSP achieves the minimax regret rate $widetildeO(B_star sqrtS A K)$, where $K$ is the number of episodes, $S$ is the number of states, $A$
arXiv Detail & Related papers (2021-04-22T17:20:48Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
We study the fixed-support Wasserstein barycenter problem (FS-WBP)
We develop a provably fast textitdeterministic variant of the celebrated iterative Bregman projection (IBP) algorithm, named textscFastIBP.
arXiv Detail & Related papers (2020-02-12T03:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.