Approaches Toward Physical and General Video Anomaly Detection
- URL: http://arxiv.org/abs/2112.07661v1
- Date: Tue, 14 Dec 2021 18:57:44 GMT
- Title: Approaches Toward Physical and General Video Anomaly Detection
- Authors: Laura Kart and Niv Cohen
- Abstract summary: Anomaly detection in videos may enable automatic detection of malfunctions in many manufacturing, maintenance, and real-life settings.
We introduce the Physical Anomalous Trajectory or Motion dataset, which contains six different video classes.
We suggest an even harder benchmark where anomalous activities should be spotted on highly variable scenes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, many works have addressed the problem of finding
never-seen-before anomalies in videos. Yet, most work has been focused on
detecting anomalous frames in surveillance videos taken from security cameras.
Meanwhile, the task of anomaly detection (AD) in videos exhibiting anomalous
mechanical behavior, has been mostly overlooked. Anomaly detection in such
videos is both of academic and practical interest, as they may enable automatic
detection of malfunctions in many manufacturing, maintenance, and real-life
settings. To assess the potential of the different approaches to detect such
anomalies, we evaluate two simple baseline approaches: (i) Temporal-pooled
image AD techniques. (ii) Density estimation of videos represented with
features pretrained for video-classification.
Development of such methods calls for new benchmarks to allow evaluation of
different possible approaches. We introduce the Physical Anomalous Trajectory
or Motion (PHANTOM) dataset, which contains six different video classes. Each
class consists of normal and anomalous videos. The classes differ in the
presented phenomena, the normal class variability, and the kind of anomalies in
the videos. We also suggest an even harder benchmark where anomalous activities
should be spotted on highly variable scenes.
Related papers
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Bench is a benchmark designed to assess the proficiency of Video-LMMs in detecting anomalies and inconsistencies in videos.
Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models.
We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies.
arXiv Detail & Related papers (2024-06-14T17:59:01Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Explainable Anomaly Detection in Images and Videos: A Survey [49.07140708026425]
Anomaly detection and localization of visual data, including images and videos, are of great significance in machine learning academia and applied real-world scenarios.
Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce.
This paper provides the first survey concentrated on explainable visual anomaly detection methods.
arXiv Detail & Related papers (2023-02-13T20:17:41Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
Video anomaly detection aims to identify abnormal events that occurred in videos.
Most previous approaches learn only from normal videos using unsupervised or semi-supervised methods.
We propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection.
arXiv Detail & Related papers (2021-12-12T20:49:38Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - Deep Video Anomaly Detection: Opportunities and Challenges [12.077052764803161]
Anomaly detection is a popular and vital task in various research contexts.
Deep learning has shown its capacity in a number of domains, ranging from acoustics, images, to natural language processing.
There are numerous advantages if such intelligent systems could be realised in our daily lives.
arXiv Detail & Related papers (2021-10-11T08:41:51Z) - Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning [25.787860059872106]
Anomaly detection in surveillance videos is a challenging task due to the diversity of anomalous video content and duration.
We propose an anomaly detection framework, called Anomaly Regression Net (AR-Net), which only requires video-level labels in training stage.
Our method yields a new state-of-the-art result for video anomaly detection on ShanghaiTech dataset.
arXiv Detail & Related papers (2021-04-15T06:41:23Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.