Graph Representation Learning via Contrasting Cluster Assignments
- URL: http://arxiv.org/abs/2112.07934v1
- Date: Wed, 15 Dec 2021 07:28:58 GMT
- Title: Graph Representation Learning via Contrasting Cluster Assignments
- Authors: Chunyang Zhang, Hongyu Yao, C. L. Philip Chen and Yuena Lin
- Abstract summary: We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
- Score: 57.87743170674533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of contrastive learning, unsupervised graph representation
learning has been booming recently, even surpassing the supervised counterparts
in some machine learning tasks. Most of existing contrastive models for graph
representation learning either focus on maximizing mutual information between
local and global embeddings, or primarily depend on contrasting embeddings at
node level. However, they are still not exquisite enough to comprehensively
explore the local and global views of network topology. Although the former
considers local-global relationship, its coarse global information leads to
grudging cooperation between local and global views. The latter pays attention
to node-level feature alignment, so that the role of global view appears
inconspicuous. To avoid falling into these two extreme cases, we propose a
novel unsupervised graph representation model by contrasting cluster
assignments, called as GRCCA. It is motivated to make good use of local and
global information synthetically through combining clustering algorithms and
contrastive learning. This not only facilitates the contrastive effect, but
also provides the more high-quality graph information. Meanwhile, GRCCA further
excavates cluster-level information, which make it get insight to the elusive
association between nodes beyond graph topology. Specifically, we first
generate two augmented graphs with distinct graph augmentation strategies, then
employ clustering algorithms to obtain their cluster assignments and prototypes
respectively. The proposed GRCCA further compels the identical nodes from
different augmented graphs to recognize their cluster assignments mutually by
minimizing a cross entropy loss. To demonstrate its effectiveness, we compare
with the state-of-the-art models in three different downstream tasks. The
experimental results show that GRCCA has strong competitiveness in most tasks.
Related papers
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
This paper studies the problem of graph-level clustering, which is a novel yet challenging task.
We propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC)
Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.
arXiv Detail & Related papers (2022-10-21T11:08:10Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.