Manifold embedding data-driven mechanics
- URL: http://arxiv.org/abs/2112.09842v1
- Date: Sat, 18 Dec 2021 04:38:32 GMT
- Title: Manifold embedding data-driven mechanics
- Authors: Bahador Bahmani and WaiChing Sun
- Abstract summary: This article introduces a new data-driven approach that leverages a manifold embedding generated by the invertible neural network.
We achieve this by training a deep neural network to globally map data from the manifold onto a lower-dimensional Euclidean vector space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces a new data-driven approach that leverages a manifold
embedding generated by the invertible neural network to improve the robustness,
efficiency, and accuracy of the constitutive-law-free simulations with limited
data. We achieve this by training a deep neural network to globally map data
from the constitutive manifold onto a lower-dimensional Euclidean vector space.
As such, we establish the relation between the norm of the mapped Euclidean
vector space and the metric of the manifold and lead to a more physically
consistent notion of distance for the material data. This treatment in return
allows us to bypass the expensive combinatorial optimization, which may
significantly speed up the model-free simulations when data are abundant and of
high dimensions. Meanwhile, the learning of embedding also improves the
robustness of the algorithm when the data is sparse or distributed unevenly in
the parametric space. Numerical experiments are provided to demonstrate and
measure the performance of the manifold embedding technique under different
circumstances. Results obtained from the proposed method and those obtained via
the classical energy norms are compared.
Related papers
- Transient anisotropic kernel for probabilistic learning on manifolds [0.0]
We propose a new ISDE projection vector basis built from a transient anisotropic kernel.
The construction ensures that for times near the initial time, the DMAPS basis coincides with the transient basis.
This new vector basis better represents statistical dependencies in the learned probability measure for any dimension.
arXiv Detail & Related papers (2024-07-31T08:38:39Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Canonical normalizing flows for manifold learning [14.377143992248222]
We propose a canonical manifold learning flow method, where a novel objective enforces the transformation matrix to have few prominent and non-degenerate basis functions.
Canonical manifold flow yields a more efficient use of the latent space, automatically generating fewer prominent and distinct dimensions to represent data.
arXiv Detail & Related papers (2023-10-19T13:48:05Z) - Manifold Learning with Sparse Regularised Optimal Transport [0.17205106391379024]
Real-world datasets are subject to noisy observations and sampling, so that distilling information about the underlying manifold is a major challenge.
We propose a method for manifold learning that utilises a symmetric version of optimal transport with a quadratic regularisation.
We prove that the resulting kernel is consistent with a Laplace-type operator in the continuous limit, establish robustness to heteroskedastic noise and exhibit these results in simulations.
arXiv Detail & Related papers (2023-07-19T08:05:46Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations.
The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold.
The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction.
arXiv Detail & Related papers (2022-02-28T22:46:34Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.