Efficient Strong Scaling Through Burst Parallel Training
- URL: http://arxiv.org/abs/2112.10065v1
- Date: Sun, 19 Dec 2021 05:18:39 GMT
- Title: Efficient Strong Scaling Through Burst Parallel Training
- Authors: Seo Jin Park, Joshua Fried, Sunghyun Kim, Mohammad Alizadeh, Adam
Belay
- Abstract summary: Using large GPU clusters to train deep neural network (DNN) models is becoming an essential requirement.
We present DeepPool, a system that addresses this efficiency challenge through two key ideas.
- Score: 13.656104138147967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As emerging deep neural network (DNN) models continue to grow in size, using
large GPU clusters to train DNNs is becoming an essential requirement to
achieving acceptable training times. In this paper, we consider the case where
future increases in cluster size will cause the global batch size that can be
used to train models to reach a fundamental limit: beyond a certain point,
larger global batch sizes cause sample efficiency to degrade, increasing
overall time to accuracy. As a result, to achieve further improvements in
training performance, we must instead consider "strong scaling" strategies that
hold the global batch size constant and allocate smaller batches to each GPU.
Unfortunately, this makes it significantly more difficult to use cluster
resources efficiently. We present DeepPool, a system that addresses this
efficiency challenge through two key ideas. First, burst parallelism allocates
large numbers of GPUs to foreground jobs in bursts to exploit the unevenness in
parallelism across layers. Second, GPU multiplexing prioritizes throughput for
foreground training jobs, while packing in background training jobs to reclaim
underutilized GPU resources, thereby improving cluster-wide utilization.
Together, these two ideas enable DeepPool to deliver a 2.2 - 2.4x improvement
in total cluster throughput over standard data parallelism with a single task
when the cluster scale is large.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters [5.190794062263327]
Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements.
We propose Pipette, which is an automatic fine-grained LLM training for real-world clusters.
arXiv Detail & Related papers (2024-05-28T11:59:44Z) - Ravnest: Decentralized Asynchronous Training on Heterogeneous Devices [0.0]
Ravnest facilitates decentralized training by efficiently organizing compute nodes into clusters.
We have framed our asynchronous SGD loss function as a block structured optimization problem with delayed updates.
arXiv Detail & Related papers (2024-01-03T13:07:07Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
Large-scale machine learning models are bringing advances to a broad range of fields.
Many of these models are too large to be trained on a single machine, and must be distributed across multiple devices.
We show that maximum parallelisation is sub-optimal in relation to user-critical metrics such as throughput and blocking rate.
arXiv Detail & Related papers (2023-01-31T17:41:07Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs.
Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges.
We propose a highly parallel training algorithm that scales to large processor counts.
arXiv Detail & Related papers (2022-12-09T17:51:13Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
We show that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
We show experimentally that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
arXiv Detail & Related papers (2021-10-13T20:58:15Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
Local parallelism is a framework which parallelizes training of individual layers in deep networks by replacing global backpropagation with truncated layer-wise backpropagation.
We show results in both vision and language domains across a diverse set of architectures, and find that local parallelism is particularly effective in the high-compute regime.
arXiv Detail & Related papers (2020-12-07T16:38:45Z) - The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs
with Hybrid Parallelism [3.4377970608678314]
We present scalable hybrid-parallel algorithms for training large-scale 3D convolutional neural networks.
We evaluate our proposed training algorithms with two challenging 3D CNNs, CosmoFlow and 3D U-Net.
arXiv Detail & Related papers (2020-07-25T05:06:06Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.