Active Weighted Aging Ensemble for Drifted Data Stream Classification
- URL: http://arxiv.org/abs/2112.10150v1
- Date: Sun, 19 Dec 2021 13:52:53 GMT
- Title: Active Weighted Aging Ensemble for Drifted Data Stream Classification
- Authors: Micha{\l} Wo\'zniak, Pawe{\l} Zyblewski and Pawe{\l} Ksieniewicz
- Abstract summary: Concept drift destabilizes the performance of the classification model and seriously degrades its quality.
The proposed method has been evaluated through computer experiments using both real and generated data streams.
The results confirm the high quality of the proposed algorithm over state-of-the-art methods.
- Score: 2.277447144331876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the significant problems of streaming data classification is the
occurrence of concept drift, consisting of the change of probabilistic
characteristics of the classification task. This phenomenon destabilizes the
performance of the classification model and seriously degrades its quality. An
appropriate strategy counteracting this phenomenon is required to adapt the
classifier to the changing probabilistic characteristics. One of the
significant problems in implementing such a solution is the access to data
labels. It is usually costly, so to minimize the expenses related to this
process, learning strategies based on semi-supervised learning are proposed,
e.g., employing active learning methods indicating which of the incoming
objects are valuable to be labeled for improving the classifier's performance.
This paper proposes a novel chunk-based method for non-stationary data streams
based on classifier ensemble learning and an active learning strategy
considering a limited budget that can be successfully applied to any data
stream classification algorithm. The proposed method has been evaluated through
computer experiments using both real and generated data streams. The results
confirm the high quality of the proposed algorithm over state-of-the-art
methods.
Related papers
- Meta-learning for Positive-unlabeled Classification [40.11462237689747]
The proposed method minimizes the test classification risk after the model is adapted to PU data.
The method embeds each instance into a task-specific space using neural networks.
We empirically show that the proposed method outperforms existing methods with one synthetic and three real-world datasets.
arXiv Detail & Related papers (2024-06-06T01:50:01Z) - NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
We propose a novel active learning strategy, neural tangent kernel clustering-pseudo-labels (NTKCPL)
It estimates empirical risk based on pseudo-labels and the model prediction with NTK approximation.
We validate our method on five datasets, empirically demonstrating that it outperforms the baseline methods in most cases.
arXiv Detail & Related papers (2023-06-07T01:43:47Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
We propose a simple and efficient continual learning method for on-device environmental sound classification.
Our method selects the historical data for the training by measuring the per-sample classification uncertainty.
arXiv Detail & Related papers (2022-07-15T12:13:04Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
An unsupervised feature selection is proposed by integrating the framework of self-paced learning and subspace learning.
The convergence of the method is proved theoretically and experimentally.
The experimental results show that the proposed method can improve the performance of clustering methods and outperform other compared algorithms.
arXiv Detail & Related papers (2021-12-14T08:28:19Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
We formulate our approach as a data summarization problem via bilevel optimization.
We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.
arXiv Detail & Related papers (2020-10-19T16:53:24Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Fase-AL -- Adaptation of Fast Adaptive Stacking of Ensembles for
Supporting Active Learning [0.0]
This work presents the FASE-AL algorithm which induces classification models with non-labeled instances using Active Learning.
The algorithm achieves promising results in terms of the percentage of correctly classified instances.
arXiv Detail & Related papers (2020-01-30T17:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.