A background-free optically levitated charge sensor
- URL: http://arxiv.org/abs/2112.10383v1
- Date: Mon, 20 Dec 2021 08:16:28 GMT
- Title: A background-free optically levitated charge sensor
- Authors: Nadav Priel, Alexander Fieguth, Charles P. Blakemore, Emmett Hough,
Akio Kawasaki, Denzal Martin, Gautam Venugopalan, Giorgio Gratta
- Abstract summary: We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically levitated macroscopic objects are a powerful tool in the field of
force sensing, owing to high sensitivity, absolute force calibration,
environmental isolation and the advanced degree of control over their dynamics
that have been achieved. However, limitations arise from the spurious forces
caused by electrical polarization effects that, even for nominally neutral
objects, affect the force sensing because of the interaction of dipole moments
with gradients of external electric fields. In this paper we introduce a new
technique to model and eliminate dipole moment interactions limiting the
performance of sensors employing levitated objects. This process leads to the
first noise-limited measurement with a sensitivity of $3.3\times10^{-5}e$. As a
demonstration, this is applied to the search for unknown charges of a magnitude
much below that of an electron or for exceedingly small unbalances between
electron and proton charges. The absence of remaining systematic biases,
enables true discovery experiments, with sensitivities that are expected to
improve as the system noise is brought down to or beyond the quantum limit. As
a by-product of the technique, the electromagnetic properties of the levitated
objects can also be measured on an individual basis.
Related papers
- Impact of background field localization on vacuum polarization effects [0.0]
localization of the background field impacts nonlinear quantum vacuum signatures probed by photons in purely magnetic, electric and crossed fields.
We study the scaling of conventional nonlinear QED signatures, such as probe-photon polarization flip and probe-photon induced electron-positron pair production.
arXiv Detail & Related papers (2024-11-12T20:14:38Z) - Scheme for continuous force detection with a single electron at the
$10^{-27}\mathrm{N}$ level [0.0]
We propose a new scheme for high-sensitivity continuous force detection using a single trapped electron.
Despite the disparity in size between that of a single electron and the wavelength of the microwave field, it is possible to continuously monitor the charge's zero-point motion.
This sensitivity improves on the state-of-the-art by four orders of magnitude and thus paves the way to novel precision experiments.
arXiv Detail & Related papers (2024-02-08T19:00:06Z) - Strong Purcell enhancement of an optical magnetic dipole transition [0.0]
Engineering the local density of states with nanophotonic structures is a powerful tool to control light-matter interactions via the Purcell effect.
We experimentally demonstrate the optical magnetic Purcell effect using a single rare earth ion coupled to a nanophotonic cavity.
This work demonstrates the fundamental equivalence of electric and magnetic density of states engineering, and provides a new tool for controlling light-matter interactions for a broader class of emitters.
arXiv Detail & Related papers (2023-07-06T14:37:58Z) - A zigzag optical cavity for sensing and controlling torsional motion [0.0]
We propose a novel concept for sensing and manipulating torsional motion.
The concept inherently alleviates many limitations of previous approaches.
This work paves the way to new horizons for experiments at the interface of quantum mechanics and gravity.
arXiv Detail & Related papers (2023-06-22T11:03:18Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
A mechanically compliant element can be set into motion by the interaction with light.
This light-driven motion can give rise to ponderomotive correlations in the electromagnetic field.
cavities are often employed to enhance these correlations up to the point where they generate quantum squeezing of light.
arXiv Detail & Related papers (2022-02-18T07:57:36Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Control and measurement of electric dipole moments in levitated
optomechanics [51.52720563165496]
Control of multipole moments in the charge distribution of levitated sensors is a key requirement to sufficiently reduce background sources in future applications.
Control of multipole moments in the charge distribution of levitated sensors is a key requirement to sufficiently reduce background sources in future applications.
arXiv Detail & Related papers (2021-08-10T02:25:39Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.