Dynamic Hypergraph Convolutional Networks for Skeleton-Based Action
Recognition
- URL: http://arxiv.org/abs/2112.10570v1
- Date: Mon, 20 Dec 2021 14:46:14 GMT
- Title: Dynamic Hypergraph Convolutional Networks for Skeleton-Based Action
Recognition
- Authors: Jinfeng Wei, Yunxin Wang, Mengli Guo, Pei Lv, Xiaoshan Yang, Mingliang
Xu
- Abstract summary: We propose a novel dynamic hypergraph convolutional networks (DHGCN) for skeleton-based action recognition.
DHGCN uses hypergraph to represent the skeleton structure to effectively exploit the motion information contained in human joints.
- Score: 22.188135882864287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph convolutional networks (GCNs) based methods have achieved advanced
performance on skeleton-based action recognition task. However, the skeleton
graph cannot fully represent the motion information contained in skeleton data.
In addition, the topology of the skeleton graph in the GCN-based methods is
manually set according to natural connections, and it is fixed for all samples,
which cannot well adapt to different situations. In this work, we propose a
novel dynamic hypergraph convolutional networks (DHGCN) for skeleton-based
action recognition. DHGCN uses hypergraph to represent the skeleton structure
to effectively exploit the motion information contained in human joints. Each
joint in the skeleton hypergraph is dynamically assigned the corresponding
weight according to its moving, and the hypergraph topology in our model can be
dynamically adjusted to different samples according to the relationship between
the joints. Experimental results demonstrate that the performance of our model
achieves competitive performance on three datasets: Kinetics-Skeleton 400, NTU
RGB+D 60, and NTU RGB+D 120.
Related papers
- Dynamic Dense Graph Convolutional Network for Skeleton-based Human
Motion Prediction [14.825185477750479]
This paper presents a Dynamic Dense Graph Convolutional Network (DD-GCN) which constructs a dense graph and implements an integrated dynamic message passing.
Based on the dense graph, we propose a dynamic message passing framework that learns dynamically from data to generate distinctive messages.
Experiments on benchmark Human 3.6M and CMU Mocap datasets verify the effectiveness of our DD-GCN.
arXiv Detail & Related papers (2023-11-29T07:25:49Z) - SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training [110.55093254677638]
We propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL)
In this paper, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE.
Our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods.
arXiv Detail & Related papers (2023-07-17T13:33:11Z) - Graph Contrastive Learning for Skeleton-based Action Recognition [85.86820157810213]
We propose a graph contrastive learning framework for skeleton-based action recognition.
SkeletonGCL associates graph learning across sequences by enforcing graphs to be class-discriminative.
SkeletonGCL establishes a new training paradigm, and it can be seamlessly incorporated into current graph convolutional networks.
arXiv Detail & Related papers (2023-01-26T02:09:16Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
Graph convolutional networks (GCNs) can model the human body skeletons as spatial and temporal graphs.
In this work, we propose pose-guided GCN (PG-GCN), a multi-modal framework for high-performance human action recognition.
The core idea of this module is to utilize a trainable graph to aggregate features from the skeleton stream with that of the pose stream, which leads to a network with more robust feature representation ability.
arXiv Detail & Related papers (2022-10-10T02:08:49Z) - Representing Videos as Discriminative Sub-graphs for Action Recognition [165.54738402505194]
We introduce a new design of sub-graphs to represent and encode theriminative patterns of each action in the videos.
We present MUlti-scale Sub-Earn Ling (MUSLE) framework that novelly builds space-time graphs and clusters into compact sub-graphs on each scale.
arXiv Detail & Related papers (2022-01-11T16:15:25Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - JOLO-GCN: Mining Joint-Centered Light-Weight Information for
Skeleton-Based Action Recognition [47.47099206295254]
We propose a novel framework for employing human pose skeleton and joint-centered light-weight information jointly in a two-stream graph convolutional network.
Compared to the pure skeleton-based baseline, this hybrid scheme effectively boosts performance, while keeping the computational and memory overheads low.
arXiv Detail & Related papers (2020-11-16T08:39:22Z) - Skeleton-based Action Recognition via Spatial and Temporal Transformer
Networks [12.06555892772049]
We propose a novel Spatial-Temporal Transformer network (ST-TR) which models dependencies between joints using the Transformer self-attention operator.
The proposed ST-TR achieves state-of-the-art performance on all datasets when using joints' coordinates as input, and results on-par with state-of-the-art when adding bones information.
arXiv Detail & Related papers (2020-08-17T15:25:40Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Dynamic GCN: Context-enriched Topology Learning for Skeleton-based
Action Recognition [40.467040910143616]
We propose Dynamic GCN, in which a novel convolutional neural network named Contextencoding Network (CeN) is introduced to learn skeleton topology automatically.
CeN is extremely lightweight yet effective, and can be embedded into a graph convolutional layer.
Dynamic GCN achieves better performance with $2times$$4times$ fewer FLOPs than existing methods.
arXiv Detail & Related papers (2020-07-29T09:12:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.