Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach
- URL: http://arxiv.org/abs/2112.10630v1
- Date: Mon, 20 Dec 2021 15:45:28 GMT
- Title: Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach
- Authors: Jingren Xu, Xin Kang, Ronghaixiang Zhang, Ying-Chang Liang, and Sumei
Sun
- Abstract summary: This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
- Score: 56.84948632954274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates a master unmanned aerial vehicle (MUAV)-powered
Internet of Things (IoT) network, in which we propose using a rechargeable
auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to
enhance the communication signals from the MUAV and also leverage the MUAV as a
recharging power source. Under the proposed model, we investigate the optimal
collaboration strategy of these energy-limited UAVs to maximize the accumulated
throughput of the IoT network. Depending on whether there is charging between
the two UAVs, two optimization problems are formulated. To solve them, two
multi-agent deep reinforcement learning (DRL) approaches are proposed, which
are centralized training multi-agent deep deterministic policy gradient
(CT-MADDPG) and multi-agent deep deterministic policy option critic (MADDPOC).
It is shown that the CT-MADDPG can greatly reduce the requirement on the
computing capability of the UAV hardware, and the proposed MADDPOC is able to
support low-level multi-agent cooperative learning in the continuous action
domains, which has great advantages over the existing option-based hierarchical
DRL that only support single-agent learning and discrete actions.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
We develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs)
It is shown that task scheduling significantly reduces the average AoI.
It is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users.
arXiv Detail & Related papers (2023-05-01T11:52:15Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Deep Reinforcement Learning Based Multi-Access Edge Computing Schedule
for Internet of Vehicle [16.619839349229437]
We propose a UAVs-assisted approach to help provide a better wireless network service retaining the maximum Quality of Experience (QoE) of the Internet of Vehicles (IoVs) on the lane.
In the paper, we present a Multi-Agent Graph Convolutional Deep Reinforcement Learning (M-AGCDRL) algorithm which combines local observations of each agent with a low-resolution global map as input to learn a policy for each agent.
arXiv Detail & Related papers (2022-02-15T17:14:58Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV
based Random Access IoT Networks with NOMA [20.160827428161898]
We apply the Non-Orthogonal Multiple Access technique to improve massive channel access of a wireless IoT network where solar-powered Unmanned Aerial Vehicles (UAVs) relay data from IoT devices to remote servers.
IoT devices contend for accessing the shared wireless channel using an adaptive $p$-persistent slotted Aloha protocol; and the solar-powered UAVs adopt Successive Interference Cancellation (SIC) to decode multiple received data from IoT devices to improve access efficiency.
arXiv Detail & Related papers (2020-01-31T22:05:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.