Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs
- URL: http://arxiv.org/abs/2112.10703v1
- Date: Mon, 20 Dec 2021 17:40:48 GMT
- Title: Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs
- Authors: Haithem Turki, Deva Ramanan, Mahadev Satyanarayanan
- Abstract summary: We explore how to leverage neural fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drone data.
In contrast to the single object scenes against which NeRFs have been traditionally evaluated, this setting poses multiple challenges.
We introduce a simple clustering algorithm that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel.
- Score: 54.41204057689033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore how to leverage neural radiance fields (NeRFs) to build
interactive 3D environments from large-scale visual captures spanning buildings
or even multiple city blocks collected primarily from drone data. In contrast
to the single object scenes against which NeRFs have been traditionally
evaluated, this setting poses multiple challenges including (1) the need to
incorporate thousands of images with varying lighting conditions, all of which
capture only a small subset of the scene, (2) prohibitively high model capacity
and ray sampling requirements beyond what can be naively trained on a single
GPU, and (3) an arbitrarily large number of possible viewpoints that make it
unfeasible to precompute all relevant information beforehand (as real-time NeRF
renderers typically do). To address these challenges, we begin by analyzing
visibility statistics for large-scale scenes, motivating a sparse network
structure where parameters are specialized to different regions of the scene.
We introduce a simple geometric clustering algorithm that partitions training
images (or rather pixels) into different NeRF submodules that can be trained in
parallel. We evaluate our approach across scenes taken from the Quad 6k and
UrbanScene3D datasets as well as against our own drone footage and show a 3x
training speedup while improving PSNR by over 11% on average. We subsequently
perform an empirical evaluation of recent NeRF fast renderers on top of
Mega-NeRF and introduce a novel method that exploits temporal coherence. Our
technique achieves a 40x speedup over conventional NeRF rendering while
remaining within 0.5 db in PSNR quality, exceeding the fidelity of existing
fast renderers.
Related papers
- Aerial-NeRF: Adaptive Spatial Partitioning and Sampling for Large-Scale Aerial Rendering [10.340739248752516]
We propose Aerial-NeRF to render complex aerial scenes with high-precision.
Our model allows us to perform rendering over 4 times as fast as compared to multiple competitors.
New state-of-the-art results have been achieved on two public large-scale aerial datasets.
arXiv Detail & Related papers (2024-05-10T02:57:02Z) - BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial
Imagery [3.4956406636452626]
We introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery.
We present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps.
We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution.
arXiv Detail & Related papers (2024-02-07T03:18:34Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - Pre-NeRF 360: Enriching Unbounded Appearances for Neural Radiance Fields [8.634008996263649]
We propose a new framework to boost the performance of NeRF-based architectures.
Our solution overcomes several obstacles that plagued earlier versions of NeRF.
We introduce an updated version of the Nutrition5k dataset, known as the N5k360 dataset.
arXiv Detail & Related papers (2023-03-21T23:29:38Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
We conduct the first pilot study on training NeRF with high-resolution data.
We propose the corresponding solutions, including marrying the multilayer perceptron with convolutional layers.
Our approach is nearly free without introducing obvious training/testing costs.
arXiv Detail & Related papers (2022-11-17T17:22:28Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - Baking Neural Radiance Fields for Real-Time View Synthesis [41.07052395570522]
We present a method to train a NeRF, then precompute and store (i.e. "bake") it as a novel representation called a Sparse Neural Radiance Grid (SNeRG)
The resulting scene representation retains NeRF's ability to render fine geometric details and view-dependent appearance, is compact, and can be rendered in real-time.
arXiv Detail & Related papers (2021-03-26T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.