3D-aware Image Synthesis via Learning Structural and Textural
Representations
- URL: http://arxiv.org/abs/2112.10759v1
- Date: Mon, 20 Dec 2021 18:59:40 GMT
- Title: 3D-aware Image Synthesis via Learning Structural and Textural
Representations
- Authors: Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, Bolei Zhou
- Abstract summary: We propose VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation.
Our approach achieves sufficiently higher image quality and better 3D control than the previous methods.
- Score: 39.681030539374994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making generative models 3D-aware bridges the 2D image space and the 3D
physical world yet remains challenging. Recent attempts equip a Generative
Adversarial Network (GAN) with a Neural Radiance Field (NeRF), which maps 3D
coordinates to pixel values, as a 3D prior. However, the implicit function in
NeRF has a very local receptive field, making the generator hard to become
aware of the global structure. Meanwhile, NeRF is built on volume rendering
which can be too costly to produce high-resolution results, increasing the
optimization difficulty. To alleviate these two problems, we propose a novel
framework, termed as VolumeGAN, for high-fidelity 3D-aware image synthesis,
through explicitly learning a structural representation and a textural
representation. We first learn a feature volume to represent the underlying
structure, which is then converted to a feature field using a NeRF-like model.
The feature field is further accumulated into a 2D feature map as the textural
representation, followed by a neural renderer for appearance synthesis. Such a
design enables independent control of the shape and the appearance. Extensive
experiments on a wide range of datasets show that our approach achieves
sufficiently higher image quality and better 3D control than the previous
methods.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - GO-NeRF: Generating Virtual Objects in Neural Radiance Fields [75.13534508391852]
GO-NeRF is capable of utilizing scene context for high-quality and harmonious 3D object generation within an existing NeRF.
Our method employs a compositional rendering formulation that allows the generated 3D objects to be seamlessly composited into the scene.
arXiv Detail & Related papers (2024-01-11T08:58:13Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
We propose a compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach.
Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
arXiv Detail & Related papers (2023-03-16T16:06:03Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator [68.0533826852601]
3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes.
Existing methods fail to obtain moderate 3D shapes.
We propose a geometry-aware discriminator to improve 3D-aware GANs.
arXiv Detail & Related papers (2022-09-30T17:59:37Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.