Cloud Sphere: A 3D Shape Representation via Progressive Deformation
- URL: http://arxiv.org/abs/2112.11133v1
- Date: Tue, 21 Dec 2021 12:10:23 GMT
- Title: Cloud Sphere: A 3D Shape Representation via Progressive Deformation
- Authors: Zongji Wang, Yunfei Liu, Feng Lu
- Abstract summary: This paper is dedicated to discovering distinctive information from the shape formation process.
A Progressive Deformation-based Auto-Encoder is proposed to learn the stage-aware description.
Experimental results show that the proposed PDAE has the ability to reconstruct 3D shapes with high fidelity.
- Score: 21.216503294296317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the area of 3D shape analysis, the geometric properties of a shape have
long been studied. Instead of directly extracting representative features using
expert-designed descriptors or end-to-end deep neural networks, this paper is
dedicated to discovering distinctive information from the shape formation
process. Concretely, a spherical point cloud served as the template is
progressively deformed to fit the target shape in a coarse-to-fine manner.
During the shape formation process, several checkpoints are inserted to
facilitate recording and investigating the intermediate stages. For each stage,
the offset field is evaluated as a stage-aware description. The summation of
the offsets throughout the shape formation process can completely define the
target shape in terms of geometry. In this perspective, one can derive the
point-wise shape correspondence from the template inexpensively, which benefits
various graphic applications. In this paper, the Progressive Deformation-based
Auto-Encoder (PDAE) is proposed to learn the stage-aware description through a
coarse-to-fine shape fitting task. Experimental results show that the proposed
PDAE has the ability to reconstruct 3D shapes with high fidelity, and
consistent topology is preserved in the multi-stage deformation process.
Additional applications based on the stage-aware description are performed,
demonstrating its universality.
Related papers
- Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform [62.27337227010514]
We introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST.
RIST learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations.
RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs.
arXiv Detail & Related papers (2024-04-17T08:09:25Z) - 3D Shape Completion on Unseen Categories:A Weakly-supervised Approach [61.76304400106871]
We introduce a novel weakly-supervised framework to reconstruct the complete shapes from unseen categories.
We first propose an end-to-end prior-assisted shape learning network that leverages data from the seen categories to infer a coarse shape.
In addition, we propose a self-supervised shape refinement model to further refine the coarse shape.
arXiv Detail & Related papers (2024-01-19T09:41:09Z) - Few-shot Shape Recognition by Learning Deep Shape-aware Features [39.66613852292122]
We propose a fewshot shape descriptor (FSSD) to recognize object shapes given only one or a few samples.
We employ an embedding module for FSSD to extract transformation-invariant shape features.
Thirdly, we propose a decoding module to include the supervision of shape masks and edges and align the original and reconstructed shape features.
arXiv Detail & Related papers (2023-12-03T08:12:23Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
Point cloud completion aims at recovering original shape information from partial point clouds.
Existing methods usually succeed in completion for standard shape, while failing to generate local details of point clouds for some non-standard shapes.
In this work, we design an effective way to distinguish standard/non-standard shapes with the help of intra-class shape representation.
arXiv Detail & Related papers (2022-09-05T02:43:06Z) - ShapeFormer: Transformer-based Shape Completion via Sparse
Representation [41.33457875133559]
We present ShapeFormer, a network that produces a distribution of object completions conditioned on incomplete, and possibly noisy, point clouds.
The resultant distribution can then be sampled to generate likely completions, each exhibiting plausible shape details while being faithful to the input.
arXiv Detail & Related papers (2022-01-25T13:58:30Z) - SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation [50.53931728235875]
We present SP-GAN, a new unsupervised sphere-guided generative model for direct synthesis of 3D shapes in the form of point clouds.
Compared with existing models, SP-GAN is able to synthesize diverse and high-quality shapes with fine details.
arXiv Detail & Related papers (2021-08-10T06:49:45Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
We propose a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations.
Our key idea is to formulate DIFs as conditional deformations of a template implicit function.
We show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
arXiv Detail & Related papers (2020-11-30T06:01:49Z) - ShapeFlow: Learnable Deformations Among 3D Shapes [28.854946339507123]
We present a flow-based model for learning a deformation space for entire classes of 3D shapes with large intra-class variations.
ShapeFlow allows learning a multi-template deformation space that is agnostic to shape topology, yet preserves fine geometric details.
arXiv Detail & Related papers (2020-06-14T19:03:35Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.