PONet: Robust 3D Human Pose Estimation via Learning Orientations Only
- URL: http://arxiv.org/abs/2112.11153v1
- Date: Tue, 21 Dec 2021 12:48:48 GMT
- Title: PONet: Robust 3D Human Pose Estimation via Learning Orientations Only
- Authors: Jue Wang, Shaoli Huang, Xinchao Wang, Dacheng Tao
- Abstract summary: We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
- Score: 116.1502793612437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional 3D human pose estimation relies on first detecting 2D body
keypoints and then solving the 2D to 3D correspondence problem.Despite the
promising results, this learning paradigm is highly dependent on the quality of
the 2D keypoint detector, which is inevitably fragile to occlusions and
out-of-image absences.In this paper,we propose a novel Pose Orientation Net
(PONet) that is able to robustly estimate 3D pose by learning orientations
only, hence bypassing the error-prone keypoint detector in the absence of image
evidence. For images with partially invisible limbs, PONet estimates the 3D
orientation of these limbs by taking advantage of the local image evidence to
recover the 3D pose.Moreover, PONet is competent to infer full 3D poses even
from images with completely invisible limbs, by exploiting the orientation
correlation between visible limbs to complement the estimated poses,further
improving the robustness of 3D pose estimation.We evaluate our method on
multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW. Our
method achieves results on par with state-of-the-art techniques in ideal
settings, yet significantly eliminates the dependency on keypoint detectors and
the corresponding computation burden. In highly challenging scenarios, such as
truncation and erasing, our method performs very robustly and yields much
superior results as compared to state of the art,demonstrating its potential
for real-world applications.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence
Learning [70.75369367311897]
3D-aware global correspondences are reliable flows that jointly encode global semantic correlations, local deformations, and geometric priors of 3D human bodies.
An adversarial generator takes the garment warped by the 3D-aware flow, and the image of the target person as inputs, to synthesize the photo-realistic try-on result.
arXiv Detail & Related papers (2022-11-25T12:16:21Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows [24.0966076588569]
We propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem.
We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics.
arXiv Detail & Related papers (2021-07-29T07:33:14Z) - Weakly-supervised Cross-view 3D Human Pose Estimation [16.045255544594625]
We propose a simple yet effective pipeline for weakly-supervised cross-view 3D human pose estimation.
Our method can achieve state-of-the-art performance in a weakly-supervised manner.
We evaluate our method on the standard benchmark dataset, Human3.6M.
arXiv Detail & Related papers (2021-05-23T08:16:25Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
We leverage recent advances in reliable 2D pose estimation with CNN to estimate the 3D pose of people from depth images.
Our approach achieves very competitive results both in accuracy and speed on two public datasets.
arXiv Detail & Related papers (2020-11-10T10:08:13Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
Estimating 3D human poses from a monocular video is still a challenging task.
Many existing methods drop when the target person is cluded by other objects, or the motion is too fast/slow relative to the scale and speed of the training data.
We introduce atemporal-temporal network for robust 3D human pose estimation.
arXiv Detail & Related papers (2020-10-13T15:24:28Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.