Sparse-softmax: A Simpler and Faster Alternative Softmax Transformation
- URL: http://arxiv.org/abs/2112.12433v1
- Date: Thu, 23 Dec 2021 09:53:38 GMT
- Title: Sparse-softmax: A Simpler and Faster Alternative Softmax Transformation
- Authors: Shaoshi Sun, Zhenyuan Zhang, BoCheng Huang, Pengbin Lei, Jianlin Su,
Shengfeng Pan, Jiarun Cao
- Abstract summary: The softmax function is widely used in artificial neural networks for the multiclass classification problems.
In this paper, we provide an empirical study on a simple and concise softmax variant, namely sparse-softmax, to alleviate the problem that occurred in traditional softmax in terms of high-dimensional classification problems.
- Score: 2.3813678058429626
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The softmax function is widely used in artificial neural networks for the
multiclass classification problems, where the softmax transformation enforces
the output to be positive and sum to one, and the corresponding loss function
allows to use maximum likelihood principle to optimize the model. However,
softmax leaves a large margin for loss function to conduct optimizing operation
when it comes to high-dimensional classification, which results in
low-performance to some extent. In this paper, we provide an empirical study on
a simple and concise softmax variant, namely sparse-softmax, to alleviate the
problem that occurred in traditional softmax in terms of high-dimensional
classification problems. We evaluate our approach in several interdisciplinary
tasks, the experimental results show that sparse-softmax is simpler, faster,
and produces better results than the baseline models.
Related papers
- r-softmax: Generalized Softmax with Controllable Sparsity Rate [11.39524236962986]
We propose r-softmax, a modification of the softmax, outputting sparse probability distribution with controllable sparsity rate.
We show on several multi-label datasets that r-softmax outperforms other sparse alternatives to softmax and is highly competitive with the original softmax.
arXiv Detail & Related papers (2023-04-11T14:28:29Z) - Convex Bounds on the Softmax Function with Applications to Robustness
Verification [69.09991317119679]
The softmax function is a ubiquitous component at the output of neural networks and increasingly in intermediate layers as well.
This paper provides convex lower bounds and concave upper bounds on the softmax function, which are compatible with convex optimization formulations for characterizing neural networks and other ML models.
arXiv Detail & Related papers (2023-03-03T05:07:02Z) - Spectral Aware Softmax for Visible-Infrared Person Re-Identification [123.69049942659285]
Visible-infrared person re-identification (VI-ReID) aims to match specific pedestrian images from different modalities.
Existing methods still follow the softmax loss training paradigm, which is widely used in single-modality classification tasks.
We propose the spectral-aware softmax (SA-Softmax) loss, which can fully explore the embedding space with the modality information.
arXiv Detail & Related papers (2023-02-03T02:57:18Z) - To Softmax, or not to Softmax: that is the question when applying Active
Learning for Transformer Models [24.43410365335306]
A well known technique to reduce the amount of human effort in acquiring a labeled dataset is textitActive Learning (AL)
This paper compares eight alternatives on seven datasets.
Most of the methods are too good at identifying the true most uncertain samples (outliers) and that labeling exclusively results in worse performance.
arXiv Detail & Related papers (2022-10-06T15:51:39Z) - Softmax-free Linear Transformers [90.83157268265654]
Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks.
Existing methods are either theoretically flawed or empirically ineffective for visual recognition.
We propose a family of Softmax-Free Transformers (SOFT)
arXiv Detail & Related papers (2022-07-05T03:08:27Z) - Breaking the Softmax Bottleneck for Sequential Recommender Systems with
Dropout and Decoupling [0.0]
We show that there are more aspects to the Softmax bottleneck in SBRSs.
We propose a simple yet effective method, Dropout and Decoupling (D&D), to alleviate these problems.
Our method significantly improves the accuracy of a variety of Softmax-based SBRS algorithms.
arXiv Detail & Related papers (2021-10-11T16:52:23Z) - Sparse Attention with Linear Units [60.399814410157425]
We introduce a novel, simple method for achieving sparsity in attention: we replace the softmax activation with a ReLU.
Our model, which we call Rectified Linear Attention (ReLA), is easy to implement and more efficient than previously proposed sparse attention mechanisms.
Our analysis shows that ReLA delivers high sparsity rate and head diversity, and the induced cross attention achieves better accuracy with respect to source-target word alignment.
arXiv Detail & Related papers (2021-04-14T17:52:38Z) - Exploring Alternatives to Softmax Function [0.5924831288313849]
We investigate Taylor softmax, SM-softmax and our proposed SM-Taylor softmax as alternatives to softmax function.
Our experiments for the image classification task on different datasets reveal that there is always a configuration of the SM-Taylor softmax function that outperforms the normal softmax function.
arXiv Detail & Related papers (2020-11-23T16:50:18Z) - Optimal Approximation -- Smoothness Tradeoffs for Soft-Max Functions [73.33961743410876]
A soft-max function has two main efficiency measures: approximation and smoothness.
We identify the optimal approximation-smoothness tradeoffs for different measures of approximation and smoothness.
This leads to novel soft-max functions, each of which is optimal for a different application.
arXiv Detail & Related papers (2020-10-22T05:19:58Z) - Taming GANs with Lookahead-Minmax [63.90038365274479]
Experimental results on MNIST, SVHN, CIFAR-10, and ImageNet demonstrate a clear advantage of combining Lookahead-minmax with Adam or extragradient.
Using 30-fold fewer parameters and 16-fold smaller minibatches we outperform the reported performance of the class-dependent BigGAN on CIFAR-10 by obtaining FID of 12.19 without using the class labels.
arXiv Detail & Related papers (2020-06-25T17:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.