TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations
- URL: http://arxiv.org/abs/2112.12441v1
- Date: Thu, 23 Dec 2021 10:04:25 GMT
- Title: TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations
- Authors: Xin Tian, Xinxian Huang, Dongfeng He, Yingzhan Lin, Siqi Bao, Huang
He, Liankai Huang, Qiang Ju, Xiyuan Zhang, Jian Xie, Shuqi Sun, Fan Wang, Hua
Wu, Haifeng Wang
- Abstract summary: We propose a novel model-agnostic data augmentation paradigm to boost the robustness of task-oriented dialogue modeling on spoken conversations.
Our approach ranked first in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling on spoken conversations.
- Score: 24.245354500835465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue systems have been plagued by the difficulties of
obtaining large-scale and high-quality annotated conversations. Furthermore,
most of the publicly available datasets only include written conversations,
which are insufficient to reflect actual human behaviors in practical spoken
dialogue systems. In this paper, we propose Task-oriented Dialogue Data
Augmentation (TOD-DA), a novel model-agnostic data augmentation paradigm to
boost the robustness of task-oriented dialogue modeling on spoken
conversations. The TOD-DA consists of two modules: 1) Dialogue Enrichment to
expand training data on task-oriented conversations for easing data sparsity
and 2) Spoken Conversation Simulator to imitate oral style expressions and
speech recognition errors in diverse granularities for bridging the gap between
written and spoken conversations. With such designs, our approach ranked first
in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling
on spoken conversations, demonstrating the superiority and effectiveness of our
proposed TOD-DA.
Related papers
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging
Knowledge Graphs [15.876075659237722]
Multi-Passage to Dialogue (MP2D) generates question-answering datasets with natural topic transitions.
MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation.
This study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog.
arXiv Detail & Related papers (2024-03-09T06:28:48Z) - Adapting Text-based Dialogue State Tracker for Spoken Dialogues [20.139351605832665]
We describe our engineering effort in building a highly successful model that participated in the speech-aware dialogue systems technology challenge track in DSTC11.
Our model consists of three major modules: (1) automatic speech recognition error correction to bridge the gap between the spoken and the text utterances, (2) text-based dialogue system (D3ST) for estimating the slots and values using slot descriptions, and (3) post-processing for recovering the error of the estimated slot value.
arXiv Detail & Related papers (2023-08-29T06:27:58Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.
Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - Dialog Acts for Task-Driven Embodied Agents [10.275619475149433]
Embodied agents need to be able to interact in natural language understanding task descriptions and asking appropriate follow up questions.
We propose a set of dialog acts for modelling such dialogs and annotate the TEACh dataset that includes over 3,000 situated, task oriented conversations.
We demonstrate the use of this annotated dataset in training models for tagging the dialog acts of a given utterance, predicting the dialog act of the next response given a dialog history, and use the dialog acts to guide agent's non-dialog behaviour.
arXiv Detail & Related papers (2022-09-26T18:41:28Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
We propose a unified dialogue system (UniDS) with the two aforementioned skills.
We design a unified dialogue data schema, compatible for both chit-chat and task-oriented dialogues.
We train UniDS with mixed dialogue data from a pretrained chit-chat dialogue model.
arXiv Detail & Related papers (2021-10-15T11:56:47Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.