Relativistic electron wave packets featuring persistent quantum backflow
- URL: http://arxiv.org/abs/2112.13180v1
- Date: Sat, 25 Dec 2021 03:42:06 GMT
- Title: Relativistic electron wave packets featuring persistent quantum backflow
- Authors: Siddhant Das
- Abstract summary: relativistic wave packets induce quantum backflow on a cross-section of the cylinder at practically any distance along the waveguide.
The predicted backflow is stable in time and is manifest regardless of the initial wave function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Closed-form, normalizable solutions of Dirac's equation propagating within a
semi-infinite cylindrical waveguide are obtained in terms of ordinary and
modified Bessel functions. These relativistic wave packets induce quantum
backflow on a cross-section of the cylinder at practically any distance along
the waveguide, becoming spin-polarized in the nonrelativistic limit. The
predicted backflow is stable in time and is manifest regardless of the initial
wave function.
Related papers
- Design of quantum backflow in the complex plane [0.0]
A way is presented to design quantum wave functions that exhibit backflow, namely negative probability current despite having a strictly positive spectrum of momentum.
These wave functions are derived from rational complex functions which are analytic in the upper half-plane and have zeros in the lower half-plane through which the backflowing behavior is controlled.
arXiv Detail & Related papers (2023-08-18T07:39:24Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Evolution of the wave-function's shape in a time-dependent harmonic
potential [0.0]
We show how to extract the effective dynamics for wave-packets evolving according to the Schrodinger equation.
We then show how to integrate the evolution of all the higher moments for a general wave-function in a time-dependent harmonic potential.
arXiv Detail & Related papers (2023-05-05T21:05:36Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Waveflow: boundary-conditioned normalizing flows applied to fermionic wavefunctions [3.7135179920970534]
We introduce Waveflow, a framework for learning fermionic wavefunctions using boundary-conditioned normalizing flows.
We show that Waveflow can effectively resolve topological mismatches and faithfully learn the ground-state wavefunction.
arXiv Detail & Related papers (2022-11-27T14:32:09Z) - Experimental study of closed and open microwave waveguide graphs with
preserved and partially violated time-reversal invariance [3.0383898736649115]
Microwave waveguide systems may serve as a model for closed and open quantum graphs.
Quantum graphs with incommensurate bond lengths attracted interest within the field of quantum chaos.
arXiv Detail & Related papers (2022-06-16T01:43:46Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Sub-barrier quantum tunneling: eliminating the MacColl-Hartman paradox [0.0]
I show that the saturation of the group delay time of sub-barrier quantum tunneling as a function of the barrier width, comes from the saturating behavior of the phase of the stationary wave function.
arXiv Detail & Related papers (2021-08-06T11:09:30Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.