Quantum Entanglement of Non-Hermitian Quasicrystals
- URL: http://arxiv.org/abs/2112.13411v2
- Date: Mon, 21 Mar 2022 08:23:50 GMT
- Title: Quantum Entanglement of Non-Hermitian Quasicrystals
- Authors: Li-Mei Chen, Yao Zhou, Shuai A. Chen, Peng Ye
- Abstract summary: We present a class of experimentally realizable models for non-Hermitian quasicrystal chains.
We numerically determine the metal-insulator transition point.
Inspired by entanglement spectrum, we further analytically prove that a duality exists between the two phase regions.
- Score: 7.371841894852217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a hallmark of pure quantum effect, quantum entanglement has provided
unconventional routes to condensed matter systems. Here, from the perspective
of quantum entanglement, we disclose exotic quantum physics in non-Hermitian
quasicrystals. We present a class of experimentally realizable models for
non-Hermitian quasicrystal chains, in which asymmetric hopping and complex
potential coexist. We diagnose global phase diagram by means of entanglement
from both real-space and momentum-space partition. By measuring entanglement
entropy, we numerically determine the metal-insulator transition point. We
combine real-space and momentum-space entanglement spectra to complementarily
characterize the delocalization phase and the localization phase. Inspired by
entanglement spectrum, we further analytically prove that a duality exists
between the two phase regions. The transition point is self-dual and exact,
further validating the numerical result from diagonalizing non-Hermitian
matrices. Finally, we identify mobility edge by means of entanglement.
Related papers
- Deconfined Quantum Criticality in the long-range, anisotropic Heisenberg
Chain [0.0]
We investigate deconfined quantum criticality in the long-range, anisotropic Heisenberg chain.
We show that the model undergoes a continuous phase transition from a valence bond solid to an antiferromagnet.
We propose how to realize and probe deconfined quantum criticality in our model with trapped-ion quantum simulators.
arXiv Detail & Related papers (2023-11-10T19:00:07Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Entanglement spectrum and quantum phase diagram of the long-range XXZ
chain [0.0]
We investigate the entanglement spectrum of the long-range XXZ model.
We show that within the critical phase it exhibits a remarkable self-similarity.
Our results pave the way to further studies of entanglement properties in long-range quantum models.
arXiv Detail & Related papers (2022-02-27T11:39:01Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.