Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
- URL: http://arxiv.org/abs/2112.13530v2
- Date: Mon, 1 Apr 2024 04:09:22 GMT
- Title: Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
- Authors: Yufeng Zhang, Siyu Chen, Zhuoran Yang, Michael I. Jordan, Zhaoran Wang,
- Abstract summary: Actor-critic (AC) algorithms, empowered by neural networks, have had significant empirical success in recent years.
We take a mean-field perspective on the evolution and convergence of feature-based neural AC.
We prove that neural AC finds the globally optimal policy at a sublinear rate.
- Score: 137.04558017227583
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Actor-critic (AC) algorithms, empowered by neural networks, have had significant empirical success in recent years. However, most of the existing theoretical support for AC algorithms focuses on the case of linear function approximations, or linearized neural networks, where the feature representation is fixed throughout training. Such a limitation fails to capture the key aspect of representation learning in neural AC, which is pivotal in practical problems. In this work, we take a mean-field perspective on the evolution and convergence of feature-based neural AC. Specifically, we consider a version of AC where the actor and critic are represented by overparameterized two-layer neural networks and are updated with two-timescale learning rates. The critic is updated by temporal-difference (TD) learning with a larger stepsize while the actor is updated via proximal policy optimization (PPO) with a smaller stepsize. In the continuous-time and infinite-width limiting regime, when the timescales are properly separated, we prove that neural AC finds the globally optimal policy at a sublinear rate. Additionally, we prove that the feature representation induced by the critic network is allowed to evolve within a neighborhood of the initial one.
Related papers
- Learning-Based Verification of Stochastic Dynamical Systems with Neural Network Policies [7.9898826915621965]
We use a verification procedure that trains another neural network, which acts as a certificate proving that the policy satisfies the task.
For reach-avoid tasks, it suffices to show that this certificate network is a reach-avoid supermartingale (RASM)
arXiv Detail & Related papers (2024-06-02T18:19:19Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Overcoming the Spectral Bias of Neural Value Approximation [17.546011419043644]
Value approximation using deep neural networks is often the primary module that provides learning signals to the rest of the algorithm.
Recent works in neural kernel regression suggest the presence of a spectral bias, where fitting high-frequency components of the value function requires exponentially more gradient update steps than the low-frequency ones.
We re-examine off-policy reinforcement learning through the lens of kernel regression and propose to overcome such bias via a composite neural kernel.
arXiv Detail & Related papers (2022-06-09T17:59:57Z) - Online Attentive Kernel-Based Temporal Difference Learning [13.94346725929798]
Online Reinforcement Learning (RL) has been receiving increasing attention due to its fast learning capability and improving data efficiency.
Online RL often suffers from complex Value Function Approximation (VFA) and catastrophic interference.
We propose an Online Attentive Kernel-Based Temporal Difference (OAKTD) algorithm using two-timescale optimization.
arXiv Detail & Related papers (2022-01-22T14:47:10Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory [110.99247009159726]
Temporal-difference and Q-learning play a key role in deep reinforcement learning, where they are empowered by expressive nonlinear function approximators such as neural networks.
In particular, temporal-difference learning converges when the function approximator is linear in a feature representation, which is fixed throughout learning, and possibly diverges otherwise.
arXiv Detail & Related papers (2020-06-08T17:25:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.