AdaptivePose: Human Parts as Adaptive Points
- URL: http://arxiv.org/abs/2112.13635v1
- Date: Mon, 27 Dec 2021 12:46:12 GMT
- Title: AdaptivePose: Human Parts as Adaptive Points
- Authors: Yabo Xiao, Xiaojuan Wang, Dongdong Yu, Guoli Wang, Qian Zhang, Mingshu
He
- Abstract summary: We propose to represent the human parts as points and present a novel body representation.
We achieve the best speed-accuracy trade-offs of 67.4% AP / 29.4 fps with DLA-34 and 71.3% AP / 9.1 fps with HRNet-W48 on test-dev dataset.
- Score: 7.833251195123861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-person pose estimation methods generally follow top-down and bottom-up
paradigms, both of which can be considered as two-stage approaches thus leading
to the high computation cost and low efficiency. Towards a compact and
efficient pipeline for multi-person pose estimation task, in this paper, we
propose to represent the human parts as points and present a novel body
representation, which leverages an adaptive point set including the human
center and seven human-part related points to represent the human instance in a
more fine-grained manner. The novel representation is more capable of capturing
the various pose deformation and adaptively factorizes the long-range
center-to-joint displacement thus delivers a single-stage differentiable
network to more precisely regress multi-person pose, termed as AdaptivePose.
For inference, our proposed network eliminates the grouping as well as
refinements and only needs a single-step disentangling process to form
multi-person pose. Without any bells and whistles, we achieve the best
speed-accuracy trade-offs of 67.4% AP / 29.4 fps with DLA-34 and 71.3% AP / 9.1
fps with HRNet-W48 on COCO test-dev dataset.
Related papers
- AdaptivePose++: A Powerful Single-Stage Network for Multi-Person Pose
Regression [66.39539141222524]
We propose to represent the human parts as adaptive points and introduce a fine-grained body representation method.
With the proposed body representation, we deliver a compact single-stage multi-person pose regression network, termed as AdaptivePose.
We employ AdaptivePose for both 2D/3D multi-person pose estimation tasks to verify the effectiveness of AdaptivePose.
arXiv Detail & Related papers (2022-10-08T12:54:20Z) - Bottom-Up 2D Pose Estimation via Dual Anatomical Centers for Small-Scale
Persons [75.86463396561744]
In multi-person 2D pose estimation, the bottom-up methods simultaneously predict poses for all persons.
Our method achieves 38.4% improvement on bounding box precision and 39.1% improvement on bounding box recall over the state of the art (SOTA)
For the human pose AP evaluation, we achieve a new SOTA (71.0 AP) on the COCO test-dev set with the single-scale testing.
arXiv Detail & Related papers (2022-08-25T10:09:10Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
We present Multi-view Pose transformer (MvP) for estimating multi-person 3D poses from multi-view images.
MvP directly regresses the multi-person 3D poses in a clean and efficient way, without relying on intermediate tasks.
We show experimentally that our MvP model outperforms the state-of-the-art methods on several benchmarks while being much more efficient.
arXiv Detail & Related papers (2021-11-07T13:09:20Z) - InsPose: Instance-Aware Networks for Single-Stage Multi-Person Pose
Estimation [37.80984212500406]
We present a simple yet effective solution by employing instance-aware dynamic networks.
Specifically, we propose an instance-aware module to adaptively adjust (part of) the network parameters for each instance.
Our solution can significantly increase the capacity and adaptive-ability of the network for recognizing various poses, while maintaining a compact end-to-end trainable pipeline.
arXiv Detail & Related papers (2021-07-19T15:56:09Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
Epipolar constraints are at the core of feature matching and depth estimation in multi-person 3D human pose estimation methods.
Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances.
In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation.
arXiv Detail & Related papers (2020-07-21T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.