Multiagent Model-based Credit Assignment for Continuous Control
- URL: http://arxiv.org/abs/2112.13937v1
- Date: Mon, 27 Dec 2021 23:26:00 GMT
- Title: Multiagent Model-based Credit Assignment for Continuous Control
- Authors: Dongge Han, Chris Xiaoxuan Lu, Tomasz Michalak, Michael Wooldridge
- Abstract summary: This work presents a decentralised multiagent reinforcement learning framework for continuous control.
We first develop a cooperative multiagent PPO framework that allows for centralised optimisation.
We then propose a generic game-theoretic credit assignment framework which computes agent-specific reward signals.
- Score: 3.2595483703857835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (RL) has recently shown great promise in robotic
continuous control tasks. Nevertheless, prior research in this vein center
around the centralized learning setting that largely relies on the
communication availability among all the components of a robot. However, agents
in the real world often operate in a decentralised fashion without
communication due to latency requirements, limited power budgets and safety
concerns. By formulating robotic components as a system of decentralised
agents, this work presents a decentralised multiagent reinforcement learning
framework for continuous control. To this end, we first develop a cooperative
multiagent PPO framework that allows for centralized optimisation during
training and decentralised operation during execution. However, the system only
receives a global reward signal which is not attributed towards each agent. To
address this challenge, we further propose a generic game-theoretic credit
assignment framework which computes agent-specific reward signals. Last but not
least, we also incorporate a model-based RL module into our credit assignment
framework, which leads to significant improvement in sample efficiency. We
demonstrate the effectiveness of our framework on experimental results on
Mujoco locomotion control tasks. For a demo video please visit:
https://youtu.be/gFyVPm4svEY.
Related papers
- Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Macro-Action-Based Multi-Agent/Robot Deep Reinforcement Learning under
Partial Observability [4.111899441919164]
State-of-the-art multi-agent reinforcement learning (MARL) methods have provided promising solutions to a variety of complex problems.
We first propose a group of value-based RL approaches for MacDec-POMDPs.
We formulate a set of macro-action-based policy gradient algorithms under the three training paradigms.
arXiv Detail & Related papers (2022-09-20T21:13:51Z) - Decentralized Cooperative Multi-Agent Reinforcement Learning with
Exploration [35.75029940279768]
We study multi-agent reinforcement learning in the most basic cooperative setting -- Markov teams.
We propose an algorithm in which each agent independently runs a stage-based V-learning style algorithm.
We show that the agents can learn an $epsilon$-approximate Nash equilibrium policy in at most $proptowidetildeO (1/epsilon4)$ episodes.
arXiv Detail & Related papers (2021-10-12T02:45:12Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent
Control [3.3788926259119645]
In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics.
Deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics.
Existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system.
We propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee.
arXiv Detail & Related papers (2020-09-20T06:11:42Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.