The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2112.14023v1
- Date: Tue, 28 Dec 2021 07:31:18 GMT
- Title: The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection
- Authors: Zhikang Zou, Xiaoqing Ye, Liang Du, Xianhui Cheng, Xiao Tan, Li Zhang,
Jianfeng Feng, Xiangyang Xue, Errui Ding
- Abstract summary: Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
- Score: 62.1185839286255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-cost monocular 3D object detection plays a fundamental role in autonomous
driving, whereas its accuracy is still far from satisfactory. In this paper, we
dig into the 3D object detection task and reformulate it as the sub-tasks of
object localization and appearance perception, which benefits to a deep
excavation of reciprocal information underlying the entire task. We introduce a
Dynamic Feature Reflecting Network, named DFR-Net, which contains two novel
standalone modules: (i) the Appearance-Localization Feature Reflecting module
(ALFR) that first separates taskspecific features and then self-mutually
reflects the reciprocal features; (ii) the Dynamic Intra-Trading module (DIT)
that adaptively realigns the training processes of various sub-tasks via a
self-learning manner. Extensive experiments on the challenging KITTI dataset
demonstrate the effectiveness and generalization of DFR-Net. We rank 1st among
all the monocular 3D object detectors in the KITTI test set (till March 16th,
2021). The proposed method is also easy to be plug-and-play in many
cutting-edge 3D detection frameworks at negligible cost to boost performance.
The code will be made publicly available.
Related papers
- ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception
Network for Autonomous Driving [7.137567622606353]
We present a real-time multi-task convolutional neural network for LiDAR-based object detection, semantics, and motion segmentation.
We propose a novel Semantic Weighting and Guidance (SWAG) module to transfer semantic features for improved object detection selectively.
We achieve state-of-the-art results for two tasks, semantic and motion segmentation, and close to state-of-the-art performance for 3D object detection.
arXiv Detail & Related papers (2023-07-17T21:22:17Z) - AOP-Net: All-in-One Perception Network for Joint LiDAR-based 3D Object
Detection and Panoptic Segmentation [9.513467995188634]
AOP-Net is a LiDAR-based multi-task framework that combines 3D object detection and panoptic segmentation.
The AOP-Net achieves state-of-the-art performance for published works on the nuScenes benchmark for both 3D object detection and panoptic segmentation tasks.
arXiv Detail & Related papers (2023-02-02T05:31:53Z) - Simultaneous Multiple Object Detection and Pose Estimation using 3D
Model Infusion with Monocular Vision [21.710141497071373]
Multiple object detection and pose estimation are vital computer vision tasks.
We propose simultaneous neural modeling of both using monocular vision and 3D model infusion.
Our Simultaneous Multiple Object detection and Pose Estimation network (SMOPE-Net) is an end-to-end trainable multitasking network.
arXiv Detail & Related papers (2022-11-21T05:18:56Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.