Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive
Person Re-Identification
- URL: http://arxiv.org/abs/2112.14025v1
- Date: Tue, 28 Dec 2021 07:40:12 GMT
- Title: Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive
Person Re-Identification
- Authors: Jian Han, Yali li, and Shengjin Wang
- Abstract summary: We propose an approach named probabilistic uncertainty guided progressive label refinery (P$2$LR) for domain adaptive person re-identification.
A quantitative criterion is established to measure the uncertainty of pseudo labels and facilitate the network training.
Our method outperforms the baseline by 6.5% mAP on the Duke2Market task, while surpassing the state-of-the-art method by 2.5% mAP on the Market2MSMT task.
- Score: 54.174146346387204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering-based unsupervised domain adaptive (UDA) person re-identification
(ReID) reduces exhaustive annotations. However, owing to unsatisfactory feature
embedding and imperfect clustering, pseudo labels for target domain data
inherently contain an unknown proportion of wrong ones, which would mislead
feature learning. In this paper, we propose an approach named probabilistic
uncertainty guided progressive label refinery (P$^2$LR) for domain adaptive
person re-identification. First, we propose to model the labeling uncertainty
with the probabilistic distance along with ideal single-peak distributions. A
quantitative criterion is established to measure the uncertainty of pseudo
labels and facilitate the network training. Second, we explore a progressive
strategy for refining pseudo labels. With the uncertainty-guided alternative
optimization, we balance between the exploration of target domain data and the
negative effects of noisy labeling. On top of a strong baseline, we obtain
significant improvements and achieve the state-of-the-art performance on four
UDA ReID benchmarks. Specifically, our method outperforms the baseline by 6.5%
mAP on the Duke2Market task, while surpassing the state-of-the-art method by
2.5% mAP on the Market2MSMT task.
Related papers
- Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
We propose a novel bi-discriminator domain adversarial neural network with class-level gradient alignment.
BACG resorts to gradient signals and second-order probability estimation for better alignment of domain distributions.
In addition, inspired by contrastive learning, we develop a memory bank-based variant, i.e. Fast-BACG, which can greatly shorten the training process.
arXiv Detail & Related papers (2023-10-21T09:53:17Z) - Guiding Pseudo-labels with Uncertainty Estimation for Test-Time
Adaptation [27.233704767025174]
Test-Time Adaptation (TTA) is a specific case of Unsupervised Domain Adaptation (UDA) where a model is adapted to a target domain without access to source data.
We propose a novel approach for the TTA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels.
arXiv Detail & Related papers (2023-03-07T10:04:55Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
Cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to mismatch between training and testing distributions.
Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data.
This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm.
arXiv Detail & Related papers (2022-06-20T14:02:53Z) - Unsupervised Robust Domain Adaptation without Source Data [75.85602424699447]
We study the problem of robust domain adaptation in the context of unavailable target labels and source data.
We show a consistent performance improvement of over $10%$ in accuracy against the tested baselines on four benchmark datasets.
arXiv Detail & Related papers (2021-03-26T16:42:28Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain
Adaptation on Person Re-identification [56.97651712118167]
Person re-identification (re-ID) aims at identifying the same persons' images across different cameras.
domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one.
We propose an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels.
arXiv Detail & Related papers (2020-01-06T12:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.