Dense Depth Estimation from Multiple 360-degree Images Using Virtual
Depth
- URL: http://arxiv.org/abs/2112.14931v1
- Date: Thu, 30 Dec 2021 05:27:28 GMT
- Title: Dense Depth Estimation from Multiple 360-degree Images Using Virtual
Depth
- Authors: Seongyeop Yang, Kunhee Kim, Yeejin Lee
- Abstract summary: The proposed pipeline leverages a spherical camera model that compensates for radial distortion in 360degree: images.
We propose an effective dense depth estimation method by setting virtual depth and minimizing photonic reprojection error.
The experimental results verify that the proposed pipeline improves estimation accuracy compared to the current state-of-art dense depth estimation methods.
- Score: 4.984601297028257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a dense depth estimation pipeline for multiview
360\degree\: images. The proposed pipeline leverages a spherical camera model
that compensates for radial distortion in 360\degree\: images. The key
contribution of this paper is the extension of a spherical camera model to
multiview by introducing a translation scaling scheme. Moreover, we propose an
effective dense depth estimation method by setting virtual depth and minimizing
photonic reprojection error. We validate the performance of the proposed
pipeline using the images of natural scenes as well as the synthesized dataset
for quantitive evaluation. The experimental results verify that the proposed
pipeline improves estimation accuracy compared to the current state-of-art
dense depth estimation methods.
Related papers
- ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation [6.832852988957967]
We propose a new depth estimation framework that utilizes unlabeled 360-degree data effectively.
Our approach uses state-of-the-art perspective depth estimation models as teacher models to generate pseudo labels.
We tested our approach on benchmark datasets such as Matterport3D and Stanford2D3D, showing significant improvements in depth estimation accuracy.
arXiv Detail & Related papers (2024-06-18T17:59:31Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
We present a visual-inertial depth estimation pipeline that integrates monocular depth estimation and visual-inertial odometry.
Our approach performs global scale and shift alignment against sparse metric depth, followed by learning-based dense alignment.
We evaluate on the TartanAir and VOID datasets, observing up to 30% reduction in RMSE with dense scale alignment.
arXiv Detail & Related papers (2023-03-21T18:47:34Z) - DiffusionDepth: Diffusion Denoising Approach for Monocular Depth
Estimation [23.22005119986485]
DiffusionDepth is a new approach that reformulates monocular depth estimation as a denoising diffusion process.
It learns an iterative denoising process to denoise' random depth distribution into a depth map with the guidance of monocular visual conditions.
Experimental results on KITTI and NYU-Depth-V2 datasets suggest that a simple yet efficient diffusion approach could reach state-of-the-art performance in both indoor and outdoor scenarios with acceptable inference time.
arXiv Detail & Related papers (2023-03-09T03:48:24Z) - Depth Estimation from Single-shot Monocular Endoscope Image Using Image
Domain Adaptation And Edge-Aware Depth Estimation [1.7086737326992167]
We propose a depth estimation method from a single-shot monocular endoscopic image using Lambertian surface translation by domain adaptation and depth estimation using multi-scale edge loss.
The texture and specular reflection on the surface of an organ reduce the accuracy of depth estimations.
We applied the estimated depth images to automated anatomical location identification of colonoscopic images using a convolutional neural network.
arXiv Detail & Related papers (2022-01-12T14:06:54Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Differentiable Diffusion for Dense Depth Estimation from Multi-view
Images [31.941861222005603]
We present a method to estimate dense depth by optimizing a sparse set of points such that their diffusion into a depth map minimizes a multi-view reprojection error from RGB supervision.
We also develop an efficient optimization routine that can simultaneously optimize the 50k+ points required for complex scene reconstruction.
arXiv Detail & Related papers (2021-06-16T16:17:34Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Variational Monocular Depth Estimation for Reliability Prediction [12.951621755732544]
Self-supervised learning for monocular depth estimation is widely investigated as an alternative to supervised learning approach.
Previous works have successfully improved the accuracy of depth estimation by modifying the model structure.
In this paper, we theoretically formulate a variational model for the monocular depth estimation to predict the reliability of the estimated depth image.
arXiv Detail & Related papers (2020-11-24T06:23:51Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VO is a novel framework for monocular visual odometry that exploits deep networks on three levels -- deep depth, pose and uncertainty estimation.
We first propose a novel self-supervised monocular depth estimation network trained on stereo videos without any external supervision.
We model the photometric uncertainties of pixels on the input images, which improves the depth estimation accuracy.
arXiv Detail & Related papers (2020-03-02T17:47:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.