A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning
- URL: http://arxiv.org/abs/2112.15400v4
- Date: Mon, 25 Mar 2024 12:22:53 GMT
- Title: A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning
- Authors: Xidong Feng, Bo Liu, Jie Ren, Luo Mai, Rui Zhu, Haifeng Zhang, Jun Wang, Yaodong Yang,
- Abstract summary: Gradient-based Meta-RL (GMRL) refers to methods that maintain two-level optimisation procedures.
We show that existing meta-gradient estimators adopted by GMRL are actually text-bfbiased.
We conduct experiments on Iterated Prisoner's Dilemma and Atari games to show how other methods such as off-policy learning and low-bias estimator can help fix the gradient bias for GMRL algorithms in general.
- Score: 16.824515577815696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based Meta-RL (GMRL) refers to methods that maintain two-level optimisation procedures wherein the outer-loop meta-learner guides the inner-loop gradient-based reinforcement learner to achieve fast adaptations. In this paper, we develop a unified framework that describes variations of GMRL algorithms and points out that existing stochastic meta-gradient estimators adopted by GMRL are actually \textbf{biased}. Such meta-gradient bias comes from two sources: 1) the compositional bias incurred by the two-level problem structure, which has an upper bound of $\mathcal{O}\big(K\alpha^{K}\hat{\sigma}_{\text{In}}|\tau|^{-0.5}\big)$ \emph{w.r.t.} inner-loop update step $K$, learning rate $\alpha$, estimate variance $\hat{\sigma}^{2}_{\text{In}}$ and sample size $|\tau|$, and 2) the multi-step Hessian estimation bias $\hat{\Delta}_{H}$ due to the use of autodiff, which has a polynomial impact $\mathcal{O}\big((K-1)(\hat{\Delta}_{H})^{K-1}\big)$ on the meta-gradient bias. We study tabular MDPs empirically and offer quantitative evidence that testifies our theoretical findings on existing stochastic meta-gradient estimators. Furthermore, we conduct experiments on Iterated Prisoner's Dilemma and Atari games to show how other methods such as off-policy learning and low-bias estimator can help fix the gradient bias for GMRL algorithms in general.
Related papers
- Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
We present an unbiased method for posterior means based on kinetic Langevin dynamics.
Our proposed estimator is unbiased, attains finite variance, and satisfies a central limit theorem.
Our results demonstrate that in large-scale applications, the unbiased algorithm we present can be 2-3 orders of magnitude more efficient than the gold-standard" randomized Hamiltonian Monte Carlo.
arXiv Detail & Related papers (2023-11-08T21:19:52Z) - A Coreset-based, Tempered Variational Posterior for Accurate and
Scalable Stochastic Gaussian Process Inference [2.7855886538423187]
We present a novel variational Gaussian process ($mathcalGP$) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets)
We deriveGP's lower bound for the log-marginal likelihood via marginalization of latent $mathcalGP$ coreset variables.
arXiv Detail & Related papers (2023-11-02T17:22:22Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Generalization Bounds for Gradient Methods via Discrete and Continuous
Prior [8.76346911214414]
We show a new high probability generalization bound of order $O(frac1n + fracL2n2sum_t=1T(gamma_t/varepsilon_t)2)$ for gradient Langevin Dynamics (GLD)
We can also obtain new bounds for certain variants of SGD.
arXiv Detail & Related papers (2022-05-27T07:23:01Z) - Computationally Efficient Horizon-Free Reinforcement Learning for Linear
Mixture MDPs [111.75736569611159]
We propose the first computationally efficient horizon-free algorithm for linear mixture MDPs.
Our algorithm adapts a weighted least square estimator for the unknown transitional dynamic.
This also improves upon the best-known algorithms in this setting when $sigma_k2$'s are known.
arXiv Detail & Related papers (2022-05-23T17:59:18Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
We consider decentralized machine learning over a network where the training data is distributed across $n$ agents.
The agent's common goal is to find a model that minimizes the average of all local loss functions.
We improve the dependency on $p$ from $mathcalO(p-1)$ to $mathcalO(p-1)$ in the noiseless case.
arXiv Detail & Related papers (2022-02-08T12:58:14Z) - Biased Gradient Estimate with Drastic Variance Reduction for Meta
Reinforcement Learning [25.639542287310768]
biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates.
We propose linearized score function (LSF) gradient estimates, which have bias $mathcalO (1/sqrtN)$ and variance $mathcalO (1/N)$.
We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.
arXiv Detail & Related papers (2021-12-14T12:29:43Z) - Correcting Momentum with Second-order Information [50.992629498861724]
We develop a new algorithm for non-critical optimization that finds an $O(epsilon)$epsilon point in the optimal product.
We validate our results on a variety of large-scale deep learning benchmarks and architectures.
arXiv Detail & Related papers (2021-03-04T19:01:20Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
We propose a new framework of variance-reduced Hamiltonian Monte Carlo (HMC) methods for sampling from an $L$-smooth and $m$-strongly log-concave distribution.
We show that the unbiased gradient estimators, including SAGA and SVRG, based HMC methods achieve highest gradient efficiency with small batch size.
Experimental results on both synthetic and real-world benchmark data show that our new framework significantly outperforms the full gradient and gradient HMC approaches.
arXiv Detail & Related papers (2021-02-09T02:44:24Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.