The Interpretability of LSTM Models for Predicting Oil Company Stocks:
Impact of Correlated Features
- URL: http://arxiv.org/abs/2201.00350v5
- Date: Wed, 20 Dec 2023 09:09:47 GMT
- Title: The Interpretability of LSTM Models for Predicting Oil Company Stocks:
Impact of Correlated Features
- Authors: Javad T. Firouzjaee and Pouriya Khaliliyan
- Abstract summary: This study investigates the impact of correlated features on the interpretability of Long Short-Term Memory(LSTM)citeec04 models for predicting oil company stocks.
Our approach aims to improve the accuracy of stock price prediction by considering the multiple factors affecting the market, such as crude oil prices, gold prices, and the US dollar.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oil companies are among the largest companies in the world whose economic
indicators in the global stock market have a great impact on the world
economy\cite{ec00} and market due to their relation to gold\cite{ec01}, crude
oil\cite{ec02}, and the dollar\cite{ec03}. This study investigates the impact
of correlated features on the interpretability of Long Short-Term
Memory(LSTM)\cite{ec04} models for predicting oil company stocks. To achieve
this, we designed a Standard Long Short-Term Memory (LSTM) network and trained
it using various correlated datasets. Our approach aims to improve the accuracy
of stock price prediction by considering the multiple factors affecting the
market, such as crude oil prices, gold prices, and the US dollar. The results
demonstrate that adding a feature correlated with oil stocks does not improve
the interpretability of LSTM models. These findings suggest that while LSTM
models may be effective in predicting stock prices, their interpretability may
be limited. Caution should be exercised when relying solely on LSTM models for
stock price prediction as their lack of interpretability may make it difficult
to fully understand the underlying factors driving stock price movements. We
have employed complexity analysis to support our argument, considering that
financial markets encompass a form of physical complex system\cite{ec05}. One
of the fundamental challenges faced in utilizing LSTM models for financial
markets lies in interpreting the unexpected feedback dynamics within them.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
We propose a hybrid model that combines Bidirectional Long Short-Term Memory (Bi-LSTM) networks with FinBERT to enhance forecasting accuracy for cryptocurrencies.
This approach fills a key gap in forecasting volatile financial markets by blending advanced time series models with sentiment analysis.
arXiv Detail & Related papers (2024-11-02T14:43:06Z) - Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis [2.7921137693344384]
We use deep learning networks, based on the history of stock prices and articles of financial, business, technical news that introduce market information to predict stock prices.
We developed a pre-trained NLP model known as FinBERT, designed to discern the sentiments within financial texts.
This model utilizes news categories related to the stock market structure hierarchy, namely market, industry, and stock related news categories, combined with the stock market's stock price situation in the previous week for prediction.
arXiv Detail & Related papers (2024-07-23T03:26:07Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches.
Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices.
Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions.
arXiv Detail & Related papers (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
We propose a new model named Long Short-Term Memory (LSTM) with Sequential Self-Attention Mechanism (LSTM-SSAM)
We conduct extensive experiments on the three stock datasets: SBIN,BANK, and BANKBARODA.
The experimental results prove the effectiveness and feasibility of the proposed model compared to existing models.
arXiv Detail & Related papers (2023-08-07T14:21:05Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - FinBERT-LSTM: Deep Learning based stock price prediction using News
Sentiment Analysis [0.0]
Being able to predict short term movements in the market enables investors to reap greater returns on their investments.
We use Deep Learning networks to predict stock prices, assimilating financial, business and technology news articles.
arXiv Detail & Related papers (2022-11-11T15:13:16Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.