Relating Blindsight and AI: A Review
- URL: http://arxiv.org/abs/2201.00616v1
- Date: Thu, 9 Dec 2021 02:33:11 GMT
- Title: Relating Blindsight and AI: A Review
- Authors: Joshua Bensemann, Qiming Bao, Ga\"el Gendron, Tim Hartill, Michael
Witbrock
- Abstract summary: We review research on the phenomenon of blindsight in an attempt to generate ideas for artificial intelligence models.
Blindsight can be considered as a diminished form of visual experience.
- Score: 2.071592865573579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processes occurring in brains, a.k.a. biological neural networks, can and
have been modeled within artificial neural network architectures. Due to this,
we have conducted a review of research on the phenomenon of blindsight in an
attempt to generate ideas for artificial intelligence models. Blindsight can be
considered as a diminished form of visual experience. If we assume that
artificial networks have no form of visual experience, then deficits caused by
blindsight give us insights into the processes occurring within visual
experience that we can incorporate into artificial neural networks. This
article has been structured into three parts. Section 2 is a review of
blindsight research, looking specifically at the errors occurring during this
condition compared to normal vision. Section 3 identifies overall patterns from
Section 2 to generate insights for computational models of vision. Section 4
demonstrates the utility of examining biological research to inform artificial
intelligence research by examining computation models of visual attention
relevant to one of the insights generated in Section 3. The research covered in
Section 4 shows that incorporating one of our insights into computational
vision does benefit those models. Future research will be required to determine
whether our other insights are as valuable.
Related papers
- Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - How does the primate brain combine generative and discriminative
computations in vision? [4.691670689443386]
Two contrasting conceptions of the inference process have each been influential in research on biological vision and machine vision.
We show that vision inverts a generative model through an interrogation of the evidence in a process often thought to involve top-down predictions of sensory data.
We explain and clarify the terminology, review the key empirical evidence, and propose an empirical research program that transcends and sets the stage for revealing the mysterious hybrid algorithm of primate vision.
arXiv Detail & Related papers (2024-01-11T16:07:58Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z) - Visual Sensation and Perception Computational Models for Deep Learning:
State of the art, Challenges and Prospects [7.949330621850412]
visual sensation and perception refers to the process of sensing, organizing, identifying, and interpreting visual information in environmental awareness and understanding.
Computational models inspired by visual perception have the characteristics of complexity and diversity, as they come from many subjects such as cognition science, information science, and artificial intelligence.
arXiv Detail & Related papers (2021-09-08T01:51:24Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
We use reinforcement learning to train neural network models to play a 3D computer game.
We find that these reinforcement learning models achieve neural response prediction accuracy scores in the early visual areas.
In contrast, the supervised neural network models yield better neural response predictions in the higher visual areas.
arXiv Detail & Related papers (2021-06-18T13:10:06Z) - Data augmentation and image understanding [2.123756175601459]
dissertation explores some advantageous synergies between machine learning, cognitive science and neuroscience.
dissertation focuses on learning representations that are more aligned with visual perception and the biological vision.
arXiv Detail & Related papers (2020-12-28T11:00:52Z) - Understanding Information Processing in Human Brain by Interpreting
Machine Learning Models [1.14219428942199]
The thesis explores the role machine learning methods play in creating intuitive computational models of neural processing.
This perspective makes the case in favor of the larger role that exploratory and data-driven approach to computational neuroscience could play.
arXiv Detail & Related papers (2020-10-17T04:37:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.