Feedback and Engagement on an Introductory Programming Module
- URL: http://arxiv.org/abs/2201.01240v1
- Date: Tue, 4 Jan 2022 16:53:09 GMT
- Title: Feedback and Engagement on an Introductory Programming Module
- Authors: Beate Grawemeyer, John Halloran, Matthew England and David Croft
- Abstract summary: We ran a study on engagement and achievement for a first year undergraduate programming module which used an online learning environment containing tasks which generate automated feedback.
We gathered quantitative data on engagement and achievement which allowed us to split the cohort into 6 groups.
We then ran interviews with students after the end of the module to produce qualitative data on perceptions of what feedback is, how useful it is, the uses made of it, and how it bears on engagement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We ran a study on engagement and achievement for a first year undergraduate
programming module which used an online learning environment containing tasks
which generate automated feedback. Students could also access human feedback
from traditional labs. We gathered quantitative data on engagement and
achievement which allowed us to split the cohort into 6 groups. We then ran
interviews with students after the end of the module to produce qualitative
data on perceptions of what feedback is, how useful it is, the uses made of it,
and how it bears on engagement. A general finding was that human and automated
feedback are different but complementary. However there are different feedback
needs by group. Our findings imply: (1) that a blended human-automated feedback
approach improves engagement; and (2) that this approach needs to be
differentiated according to type of student. We give implications for the
design of feedback for programming modules.
Related papers
- Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
We propose a framework for feedback generation that optimize both correctness and alignment using reinforcement learning (RL)
Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO)
arXiv Detail & Related papers (2024-03-02T20:25:50Z) - Students' Perceptions and Preferences of Generative Artificial
Intelligence Feedback for Programming [15.372316943507506]
We generated automated feedback using the ChatGPT API for four lab assignments in an introductory computer science class.
Students perceived the feedback as aligning well with formative feedback guidelines established by Shute.
Students generally expected specific and corrective feedback with sufficient code examples, but had diverged opinions on the tone of the feedback.
arXiv Detail & Related papers (2023-12-17T22:26:53Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
We present textscUltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset.
Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models.
arXiv Detail & Related papers (2023-10-02T17:40:01Z) - Exploring the Potential of Large Language Models to Generate Formative
Programming Feedback [0.5371337604556311]
We explore the potential of large language models (LLMs) for computing educators and learners.
To achieve these goals, we used students' programming sequences from a dataset gathered within a CS1 course as input for ChatGPT.
Results show that ChatGPT performs reasonably well for some of the introductory programming tasks and student errors.
However, educators should provide guidance on how to use the provided feedback, as it can contain misleading information for novices.
arXiv Detail & Related papers (2023-08-31T15:22:11Z) - System-Level Natural Language Feedback [83.24259100437965]
We show how to use feedback to formalize system-level design decisions in a human-in-the-loop-process.
We conduct two case studies of this approach for improving search query and dialog response generation.
We show the combination of system-level and instance-level feedback brings further gains.
arXiv Detail & Related papers (2023-06-23T16:21:40Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
This survey aims to provide an overview of the recent research that has leveraged human feedback to improve natural language generation.
First, we introduce an encompassing formalization of feedback, and identify and organize existing research into a taxonomy following this formalization.
Second, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using the feedback or training feedback models.
Third, we provide an overview of the nascent field of AI feedback, which exploits large language models to make judgments based on a set of principles and minimize the need for
arXiv Detail & Related papers (2023-05-01T17:36:06Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Deep Discourse Analysis for Generating Personalized Feedback in
Intelligent Tutor Systems [4.716555240531893]
We explore creating automated, personalized feedback in an intelligent tutoring system (ITS)
Our goal is to pinpoint correct and incorrect concepts in student answers in order to achieve better student learning gains.
arXiv Detail & Related papers (2021-03-13T20:33:10Z) - Effects of Human vs. Automatic Feedback on Students' Understanding of AI
Concepts and Programming Style [0.0]
The use of automatic grading tools has become nearly ubiquitous in large undergraduate programming courses.
There is a relative lack of data directly comparing student outcomes when receiving computer-generated feedback and human-written feedback.
This paper addresses this gap by splitting one 90-student class into two feedback groups and analyzing differences in the two cohorts' performance.
arXiv Detail & Related papers (2020-11-20T21:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.