Quantum Information Techniques for Quantum Metrology
- URL: http://arxiv.org/abs/2201.01523v1
- Date: Wed, 5 Jan 2022 10:19:25 GMT
- Title: Quantum Information Techniques for Quantum Metrology
- Authors: Nathan Shettell
- Abstract summary: Main goal of quantum metrology is to estimate unknown parameters as accurately as possible.
By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies.
This thesis explores how quantum metrology can be enhanced with other quantum techniques when appropriate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology is an auspicious discipline of quantum information which is
currently witnessing a surge of experimental breakthroughs and theoretical
developments. The main goal of quantum metrology is to estimate unknown
parameters as accurately as possible. By using quantum resources as probes, it
is possible to attain a measurement precision that would be otherwise
impossible using the best classical strategies. For example, with respect to
the task of phase estimation, the maximum precision (the Heisenberg limit) is a
quadratic gain in precision with respect to the best classical strategies. Of
course, quantum metrology is not the sole quantum technology currently
undergoing advances. The theme of this thesis is exploring how quantum
metrology can be enhanced with other quantum techniques when appropriate,
namely: graph states, error correction and cryptography.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Strong quantum metrological limit from many-body physics [0.0]
We find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states.
It reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy.
arXiv Detail & Related papers (2023-01-28T07:08:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Variational Quantum Metrology with Loschmidt Echo [20.002455345052702]
We propose a scalable scheme with a symmetrical variational quantum circuit which, same as the Loschmidt echo, consists of a forward and a backward evolution.
We show that in this scheme the quantum Fisher information, which quantifies the precision limit, can be efficiently obtained from a measurement signal of the Loschmidt echo.
We experimentally implement the scheme on an ensemble of 10-spin quantum processor and successfully achieves a precision near the theoretical limit which outperforms the standard quantum limit with 12.4 dB.
arXiv Detail & Related papers (2022-11-22T14:21:59Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum jump metrology in a two-cavity network [0.0]
In interferometry, quantum physics is used to enhance measurement precision.
An alternative approach is quantum metrology jump [L. A. Clark et al., Phys A 99, 022102] which deduces information by continuously monitoring an open quantum system.
It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states being scalable.
arXiv Detail & Related papers (2022-01-12T10:53:24Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.