Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria
- URL: http://arxiv.org/abs/2201.01816v1
- Date: Wed, 5 Jan 2022 20:54:10 GMT
- Title: Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria
- Authors: Kavya Kopparapu, Edgar A. Du\'e\~nez-Guzm\'an, Jayd Matyas, Alexander
Sasha Vezhnevets, John P. Agapiou, Kevin R. McKee, Richard Everett, Janusz
Marecki, Joel Z. Leibo, Thore Graepel
- Abstract summary: Social deduction games offer an avenue to study how individuals might learn to synthesize potentially unreliable information about others.
In this work, we present Hidden Agenda, a two-team social deduction game that provides a 2D environment for studying learning agents in scenarios of unknown team alignment.
Reinforcement learning agents trained in Hidden Agenda show that agents can learn a variety of behaviors, including partnering and voting without need for communication in natural language.
- Score: 57.74495091445414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in the study of multiagent cooperation is the need for
individual agents not only to cooperate effectively, but to decide with whom to
cooperate. This is particularly critical in situations when other agents have
hidden, possibly misaligned motivations and goals. Social deduction games offer
an avenue to study how individuals might learn to synthesize potentially
unreliable information about others, and elucidate their true motivations. In
this work, we present Hidden Agenda, a two-team social deduction game that
provides a 2D environment for studying learning agents in scenarios of unknown
team alignment. The environment admits a rich set of strategies for both teams.
Reinforcement learning agents trained in Hidden Agenda show that agents can
learn a variety of behaviors, including partnering and voting without need for
communication in natural language.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - AMONGAGENTS: Evaluating Large Language Models in the Interactive Text-Based Social Deduction Game [12.384945632524424]
This paper focuses on creating proxies of human behavior in simulated environments, with Among Us utilized as a tool for studying simulated human behavior.
Our work demonstrates that state-of-the-art large language models (LLMs) can effectively grasp the game rules and make decisions based on the current context.
arXiv Detail & Related papers (2024-07-23T14:34:38Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
We present a two-player 2D object placement game in which the players must negotiate the goal state themselves.
We show empirically that human players exhibit a variety of role distributions, and that balanced collaboration improves task performance.
arXiv Detail & Related papers (2024-06-12T13:35:10Z) - Learning Communication Policies for Different Follower Behaviors in a
Collaborative Reference Game [22.28337771947361]
We evaluate the adaptability of neural artificial agents towards assumed partner behaviors in a collaborative reference game.
Our results indicate that this novel ingredient leads to communicative strategies that are less verbose.
arXiv Detail & Related papers (2024-02-07T13:22:17Z) - Cooperation on the Fly: Exploring Language Agents for Ad Hoc Teamwork in
the Avalon Game [25.823665278297057]
This study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language.
Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication.
To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning.
arXiv Detail & Related papers (2023-12-29T08:26:54Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior.
Our proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate the learning of artificial agents.
arXiv Detail & Related papers (2022-08-22T14:06:06Z) - Cooperative Artificial Intelligence [0.0]
We argue that there is a need for research on the intersection between game theory and artificial intelligence.
We discuss the problem of how an external agent can promote cooperation between artificial learners.
We show that the resulting cooperative outcome is stable in certain games even if the planning agent is turned off.
arXiv Detail & Related papers (2022-02-20T16:50:37Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This study focuses on providing a novel learning mechanism based on a rivalry social impact.
Based on the concept of competitive rivalry, our analysis aims to investigate if we can change the assessment of these agents from a human perspective.
arXiv Detail & Related papers (2020-11-02T21:54:18Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
We develop a competitive multi agent environment called FortAttack in which two teams compete against each other.
We observe a natural emergence of heterogeneous behavior amongst homogeneous agents when such behavior can lead to the team's success.
We propose ensemble training, in which we utilize the evolved opponent strategies to train a single policy for friendly agents.
arXiv Detail & Related papers (2020-07-06T22:35:56Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.