Phrase-level Adversarial Example Generation for Neural Machine
Translation
- URL: http://arxiv.org/abs/2201.02009v1
- Date: Thu, 6 Jan 2022 11:00:49 GMT
- Title: Phrase-level Adversarial Example Generation for Neural Machine
Translation
- Authors: Juncheng Wan, Jian Yang, Shuming Ma, Dongdong Zhang, Weinan Zhang,
Yong Yu, Furu Wei
- Abstract summary: We propose a phrase-level adversarial example generation (PAEG) method to enhance the robustness of the model.
We verify our method on three benchmarks, including LDC Chinese-English, IWSLT14 German-English, and WMT14 English-German tasks.
- Score: 75.01476479100569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While end-to-end neural machine translation (NMT) has achieved impressive
progress, noisy input usually leads models to become fragile and unstable.
Generating adversarial examples as the augmented data is proved to be useful to
alleviate this problem. Existing methods for adversarial example generation
(AEG) are word-level or character-level. In this paper, we propose a
phrase-level adversarial example generation (PAEG) method to enhance the
robustness of the model. Our method leverages a gradient-based strategy to
substitute phrases of vulnerable positions in the source input. We verify our
method on three benchmarks, including LDC Chinese-English, IWSLT14
German-English, and WMT14 English-German tasks. Experimental results
demonstrate that our approach significantly improves performance compared to
previous methods.
Related papers
- Semi-supervised Neural Machine Translation with Consistency
Regularization for Low-Resource Languages [3.475371300689165]
This paper presents a simple yet effective method to tackle the problem for low-resource languages by augmenting high-quality sentence pairs and training NMT models in a semi-supervised manner.
Specifically, our approach combines the cross-entropy loss for supervised learning with KL Divergence for unsupervised fashion given pseudo and augmented target sentences.
Experimental results show that our approach significantly improves NMT baselines, especially on low-resource datasets with 0.46--2.03 BLEU scores.
arXiv Detail & Related papers (2023-04-02T15:24:08Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Sample Efficient Approaches for Idiomaticity Detection [6.481818246474555]
This work explores sample efficient methods of idiomaticity detection.
In particular, we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings.
Our experiments show that whilePET improves performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT.
arXiv Detail & Related papers (2022-05-23T13:46:35Z) - Detecting Textual Adversarial Examples Based on Distributional
Characteristics of Data Representations [11.93653349589025]
adversarial examples are constructed by adding small non-random perturbations to correctly classified inputs.
Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, or phrase-level perturbations.
We propose two new reactive methods for NLP to fill this gap.
Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset.
arXiv Detail & Related papers (2022-04-29T02:32:02Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial
Attack Framework [17.17479625646699]
We propose a unified framework to craft textual adversarial samples.
In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD)
arXiv Detail & Related papers (2021-10-28T17:31:51Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
We propose a novel approach to generate high-quality paraphrases with weak supervision data.
Specifically, we tackle the weakly-supervised paraphrase generation problem by:.
obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion.
We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
arXiv Detail & Related papers (2021-09-25T23:31:13Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
We introduce a set of simple yet effective data augmentation strategies dubbed cutoff.
cutoff relies on sampling consistency and thus adds little computational overhead.
cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
arXiv Detail & Related papers (2020-09-29T07:08:35Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.