Attention Option-Critic
- URL: http://arxiv.org/abs/2201.02628v1
- Date: Fri, 7 Jan 2022 18:44:28 GMT
- Title: Attention Option-Critic
- Authors: Raviteja Chunduru, Doina Precup
- Abstract summary: We propose an attention-based extension to the option-critic framework.
We show that this leads to behaviorally diverse options which are also capable of state abstraction.
We also demonstrate the more efficient, interpretable, and reusable nature of the learned options in comparison with option-critic.
- Score: 56.50123642237106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal abstraction in reinforcement learning is the ability of an agent to
learn and use high-level behaviors, called options. The option-critic
architecture provides a gradient-based end-to-end learning method to construct
options. We propose an attention-based extension to this framework, which
enables the agent to learn to focus different options on different aspects of
the observation space. We show that this leads to behaviorally diverse options
which are also capable of state abstraction, and prevents the degeneracy
problems of option domination and frequent option switching that occur in
option-critic, while achieving a similar sample complexity. We also demonstrate
the more efficient, interpretable, and reusable nature of the learned options
in comparison with option-critic, through different transfer learning tasks.
Experimental results in a relatively simple four-rooms environment and the more
complex ALE (Arcade Learning Environment) showcase the efficacy of our
approach.
Related papers
- Reusable Options through Gradient-based Meta Learning [24.59017394648942]
Several deep learning approaches were proposed to learn temporal abstractions in the form of options in an end-to-end manner.
We frame the problem of learning options as a gradient-based meta-learning problem.
We show that our method is able to learn transferable components which accelerate learning and performs better than existing prior methods.
arXiv Detail & Related papers (2022-12-22T14:19:35Z) - Flexible Option Learning [69.78645585943592]
We revisit and extend intra-option learning in the context of deep reinforcement learning.
We obtain significant improvements in performance and data-efficiency across a wide variety of domains.
arXiv Detail & Related papers (2021-12-06T15:07:48Z) - Temporal Abstraction in Reinforcement Learning with the Successor
Representation [65.69658154078007]
We argue that the successor representation (SR) can be seen as a natural substrate for the discovery and use of temporal abstractions.
We show how the SR can be used to discover options that facilitate either temporally-extended exploration or planning.
arXiv Detail & Related papers (2021-10-12T05:07:43Z) - Context-Specific Representation Abstraction for Deep Option Learning [43.68681795014662]
We introduce Context-Specific Representation Abstraction for Deep Option Learning (CRADOL)
CRADOL is a new framework that considers both temporal abstraction and context-specific representation abstraction to effectively reduce the size of the search over policy space.
Specifically, our method learns a factored belief state representation that enables each option to learn a policy over only a subsection of the state space.
arXiv Detail & Related papers (2021-09-20T22:50:01Z) - Adversarial Option-Aware Hierarchical Imitation Learning [89.92994158193237]
We propose Option-GAIL, a novel method to learn skills at long horizon.
The key idea of Option-GAIL is modeling the task hierarchy by options and train the policy via generative adversarial optimization.
Experiments show that Option-GAIL outperforms other counterparts consistently across a variety of tasks.
arXiv Detail & Related papers (2021-06-10T06:42:05Z) - Diversity-Enriched Option-Critic [47.82697599507171]
We show that our proposed method is capable of learning options end-to-end on several discrete and continuous control tasks.
Our approach generates robust, reusable, reliable and interpretable options, in contrast to option-critic.
arXiv Detail & Related papers (2020-11-04T22:12:54Z) - Options of Interest: Temporal Abstraction with Interest Functions [58.30081828754683]
We provide a generalization of initiation sets suitable for general function approximation, by defining an interest function associated with an option.
We derive a gradient-based learning algorithm for interest functions, leading to a new interest-option-critic architecture.
arXiv Detail & Related papers (2020-01-01T21:24:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.