Stay Positive: Knowledge Graph Embedding Without Negative Sampling
- URL: http://arxiv.org/abs/2201.02661v1
- Date: Fri, 7 Jan 2022 20:09:27 GMT
- Title: Stay Positive: Knowledge Graph Embedding Without Negative Sampling
- Authors: Ainaz Hajimoradlou and Mehran Kazemi
- Abstract summary: We propose a training procedure that obviates the need for negative sampling by adding a novel regularization term to the loss function.
Our results for two relational embedding models (DistMult and SimplE) show the merit of our proposal both in terms of performance and speed.
- Score: 1.8275108630751844
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowledge graphs (KGs) are typically incomplete and we often wish to infer
new facts given the existing ones. This can be thought of as a binary
classification problem; we aim to predict if new facts are true or false.
Unfortunately, we generally only have positive examples (the known facts) but
we also need negative ones to train a classifier. To resolve this, it is usual
to generate negative examples using a negative sampling strategy. However, this
can produce false negatives which may reduce performance, is computationally
expensive, and does not produce calibrated classification probabilities. In
this paper, we propose a training procedure that obviates the need for negative
sampling by adding a novel regularization term to the loss function. Our
results for two relational embedding models (DistMult and SimplE) show the
merit of our proposal both in terms of performance and speed.
Related papers
- Contrastive Learning with Negative Sampling Correction [52.990001829393506]
We propose a novel contrastive learning method named Positive-Unlabeled Contrastive Learning (PUCL)
PUCL treats the generated negative samples as unlabeled samples and uses information from positive samples to correct bias in contrastive loss.
PUCL can be applied to general contrastive learning problems and outperforms state-of-the-art methods on various image and graph classification tasks.
arXiv Detail & Related papers (2024-01-13T11:18:18Z) - Graph Ranking Contrastive Learning: A Extremely Simple yet Efficient Method [17.760628718072144]
InfoNCE uses augmentation techniques to obtain two views, where a node in one view acts as the anchor, the corresponding node in the other view serves as the positive sample, and all other nodes are regarded as negative samples.
The goal is to minimize the distance between the anchor node and positive samples and maximize the distance to negative samples.
Due to the lack of label information during training, InfoNCE inevitably treats samples from the same class as negative samples, leading to the issue of false negative samples.
We propose GraphRank, a simple yet efficient graph contrastive learning method that addresses the problem of false negative samples
arXiv Detail & Related papers (2023-10-23T03:15:57Z) - Your Negative May not Be True Negative: Boosting Image-Text Matching
with False Negative Elimination [62.18768931714238]
We propose a novel False Negative Elimination (FNE) strategy to select negatives via sampling.
The results demonstrate the superiority of our proposed false negative elimination strategy.
arXiv Detail & Related papers (2023-08-08T16:31:43Z) - SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval [126.22182758461244]
We show that according to the measured relevance scores, the negatives ranked around the positives are generally more informative and less likely to be false negatives.
We propose a simple ambiguous negatives sampling method, SimANS, which incorporates a new sampling probability distribution to sample more ambiguous negatives.
arXiv Detail & Related papers (2022-10-21T07:18:05Z) - Entity Aware Negative Sampling with Auxiliary Loss of False Negative
Prediction for Knowledge Graph Embedding [0.0]
We propose a novel method called Entity Aware Negative Sampling (EANS)
EANS is able to sample negative entities resemble to positive one by adopting Gaussian distribution to the aligned entity index space.
The proposed method can generate high-quality negative samples regardless of negative sample size and effectively mitigate the influence of false negative samples.
arXiv Detail & Related papers (2022-10-12T14:27:51Z) - Negative Sampling for Recommendation [7.758275614033198]
How to effectively sample high-quality negative instances is important for well training a recommendation model.
We argue that a high-quality negative should be both textitinformativeness and textitunbiasedness
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
We study how many negative samples are optimal for InfoNCE in different scenarios via a semi-quantitative theoretical framework.
We estimate the optimal negative sampling ratio using the $K$ value that maximizes the training effectiveness function.
arXiv Detail & Related papers (2021-05-27T08:38:29Z) - AdCo: Adversarial Contrast for Efficient Learning of Unsupervised
Representations from Self-Trained Negative Adversaries [55.059844800514774]
We propose an Adrial Contrastive (AdCo) model to train representations that are hard to discriminate against positive queries.
Experiment results demonstrate the proposed Adrial Contrastive (AdCo) model achieves superior performances.
arXiv Detail & Related papers (2020-11-17T05:45:46Z) - Contrastive Learning with Hard Negative Samples [80.12117639845678]
We develop a new family of unsupervised sampling methods for selecting hard negative samples.
A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible.
The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
arXiv Detail & Related papers (2020-10-09T14:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.